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Studying large-scale brain networks: electrical stimulation and neural-
event-triggered fMRI
NK Logothetis1,2*, O Eschenko1, Y Murayama1, M Augath1, T Steudel1,
HC Evrard1, M Besserve1,3, A Oeltermann1
1Max Planck Institute for Biological Cybernetics, Spemannstraße 38, 72076
Tuebingen, Germany; 2Centre for Imaging Sciences, Biomedical Imaging
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Germany
BMC Neuroscience 2013, 14(Suppl 1):A1

The brain is “the” example of an adaptive, complex system. It is characterized
by ultra-high structural complexity and massive connectivity, both of which
change and evolve in response to experience. Information related to sensors
and effectors is processed in both a parallel and a hierarchical fashion. The
connectivity between different hierarchical levels is bidirectional, and its
effectiveness is continuously controlled by specific associational and
neuromodulatory centers. In the study of such systems one major problem is
the adequate definition for an elementary operational unit (often called an
“agent”), because any such module can be a complex system in its own right
and may be recursively decomposed into other sets of units. A second
difficulty arises from the synergistic organization of complex systems and
of the brain in particular. Synergy here refers to the fact that the behavior of
an integral, aggregate, whole system cannot be trivially reduced to, or
predicted from, the components themselves. Localizing and comprehending
the neural mechanisms underlying our cognitive capacities demands the
combination of multimodal methodologies, i.e. it demands concurrent study
of components and networks; one way of doing this, is to combine invasive
methods which afford us direct access to the brain’s electrical activity at the
microcircuit level with global imaging technologies such as magnetic
resonance imaging (MRI). In my talk, I’ll discuss two such methodologies:
Direct Electrical Stimulation and fMRI (DES-fMRI) and Neural-Event-Triggered
fMRI (NET-fMRI).
DES-fMRI can be used in hopes of gaining insight into the functional or
effective connectivity underlying DES-induced behaviors. Yet, our first
findings suggest that DES has an important limitation: It clearly demarcates
all monosynaptic targets of a stimulated site, but it largely fails to reveal
polysynaptic cortico-cortical connectivity.
NET-fMRI, on the other hand, appears to offer great potential for mapping
whole-brain activity that is associated with individual local events. In the
second part of my talk, I’ll describe the characteristic states of widespread
cortical and subcortical networks that are associated with the occurrence

of hippocampal sharp waves and ripples; the brief aperiodic episodes
associated with memory consolidation.

A2
The influence of metabolic energy on neural computation
Simon Laughlin
Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
E-mail: SL104@cam.ac.uk
BMC Neuroscience 2013, 14(Suppl 1):A2

Computational Neuroscience is a vital part of the brave effort to reverse
engineer brains, ultimately our own. Our efforts are confounded by an
embarrassment of riches. Brains’ winning technology, cell and molecular
biology, enables neurons to connect and perform a huge variety of
operations and adapt them with unparalleled ingenuity and subtly. Faced
with so much that can be done, how do we discover what is done? Three
constraints can guide us. One is what has to be done, the nature of the task
and the operations that must be performed to generate the behavior that is
observed. Another is data (usually incomplete) about what is being done.
I will talk about the third constraint, physical, chemical and biological limits
to what can be done and, in particular, energy consumption.
Beyond the realms of quantum computers, computation dissipates energy.
Consequently energy supply and heat loss ultimately limit processing
power. Here the brain is severely limited by its winning technology; neurons
are low energy density devices and this restricts bandwidth and noise. I will
discuss how brains’ attempt to operate effectively with feeble neurons
influences its unique style of computation, by considering chemical and
electrical protein circuits, matching and adapting components, hybrid
processing, redundancy reduction and its opposite, sparsification. I will
propose that the efficient brain behaves like the Physics PhD Student from
Hell, who does everything as slowly as possible, as inaccurately as possible
and, wherever possible, uses chemistry. But, like many clever students, the
brain is charmingly adaptable.

A3
Rescuing the spike
Sophie Denève
Group for Neural Theory, LNC, DEC, ENS, 29, rue d’Ulm 75005 Paris, France
E-mail: sophie.deneve@gmail.com
BMC Neuroscience 2013, 14(Suppl 1):A3

Sensory and motor variables are represented by large populations of
neurons. We hypothesized that these representations are constrained such
that they can be read-out linearly (synaptic integration) while limiting the
metabolic cost. Such framework can predict many aspects of neural tuning,

BMC Neuroscience 2013, Volume 14 Suppl 1
http://www.biomedcentral.com/bmcneurosci/supplements/14/S1

© 2013 various authors, licensee BioMed Central Ltd. All articles published in this supplement are distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

mailto:SL104@cam.ac.uk
mailto:sophie.deneve@gmail.com
http://creativecommons.org/licenses/by/2.0


the population fluctuations and the size of the basin of attraction that thus
determines the onset and lifetime of persistent activity states. Moreover,
individual neuronal activity turns out to be very irregular, switching
between long periods of low firing rate to short burst-like states. We show
that this is an effect of the strong coupling strength in the network
combined with the finite memory time constant of the neurons. Thus, such
irregular neuron dynamics can be a pure network phenomenon, and do
not require intracellular bistability or additional high-variability noise as
previously suggested.
Acknowledgements: We gratefully acknowledge funding by the eScience
program of the Research Council of Norway under grant 178892/V30
(eNeuro), the Helmholtz Association: HASB and portfolio theme SMHB, the
Next-Generation Supercomputer Project of MEXT, and EU Grant 269921
(BrainScaleS). All network simulations were carried out with NEST (http://
www.nest-initiative.org) using NOTUR computing resources.
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Electrodiffusive model for neuronal and astrocytic ion concentration
dynamics
Geir Halnes*, Ivar Østby, Klas H Pettersen, Stig W Omholt, Gaute T Einevoll
Dept. of Mathematical Sciences and Technology, Norwegian University of
Life Sciences, Ås, 1432, Norway
E-mail: geir.halnes@umb.no
BMC Neuroscience 2013, 14(Suppl 1):P122

Electrical signaling in neurons is typically modeled using the cable
equation, where dendrites or axons are represented as one-dimensional
electrical cables [1]. The cable model is based on the assumptions that
the electrical currents along the cable are negligibly affected by (i)
diffusion (due to ion concentration gradients), and (ii) variation in
resistivities (due to varying ion concentrations). An electrodiffusive model,
based on the Nernst-Planck equations, has been developed for situations
when these assumptions do not hold [2]. Like the standard cable model,
the electrodiffusive model assumes that transport phenomena are
essentially one-dimensional. Unlike the standard cable model, the
electrodiffusive model explicitly includes ion-concentration dynamics and
its effect on diffusive currents and resistivities.
A limitation with the model [2] is that it only considered intracellular
dynamics, whereas extracellular conditions were assumed to be constant.
The extracellular space (ECS) comprises only about 20% of the total tissue
volume, whereas the remaining 80% is the intracellular space (ICS) of various
cells. When groups of cells perform similar functions simultaneously, the
impact on ionic concentrations may therefore be of the same order in the
ICS and ECS. For instance, during periods of intense neural signaling, the
extracellular K+-concentration may locally increase by several millimolars.
Clearance of excess K+ likely depends partly on diffusion in the ECS, partly on
local uptake via astrocytic K+-uptake mechanisms, and partly by intracellular
transport within astrocytes [3]. To model such processes, we need an
electrodiffusive formalism that includes both the ICS and ECS explicitly.
Here, we derive a simple, general mathematical framework for modeling
the dynamics of the membrane potential (vM) and the ion concentrations
(ck) for a set (k) of ionic species in an intra- and extracellular domain. The
formalism is based on the constraint of electroneutrality, except in the thin
Debye-layers surrounding the capacitive membrane. Like the one-domain
model [2], the formalism ensures (i) a consistent relationship between vM
and ck, and (ii) accounts for diffusion and concentration dependent
variations in resistivities. Unlike the one-domain model, the formalism
ensures (iii) global particle/charge conservation, and (iv) that the charges
on either side of a piece of membrane must be equal in magnitude and
opposite in sign. The latter constraint is implicit when the membrane is

assumed to be a parallel plate capacitor, an assumption made in most
models of excitable cells (see e.g., (1-3, 16)).
The formalism was implemented in a model of ionic exchange between
astrocytes and the extracellular space. By simulations, we estimated the
contribution of astrocytes in K+ removal from high concentration regions,
and revealed a (to our knowledge) novel mechanism that astrocytes may
utilize to remove K+ from extracellular high concentration regions.
Acknowledgements: The project was supported from the eScience
program (eNEURO) of the Research Council of Norway.
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Birgit Kriener1*, Moritz Helias2, Stefan Rotter4,5, Markus Diesmann2,3,
Gaute T Einevoll1
1Department of Mathematical Sciences and Technology, Norwegian
University of Life Science, Ås, Norway; 2Inst. of Neuroscience and Medicine
(INM-6) and Inst. for Advanced Simulation (IAS-6), Jülich Research Centre and
JARA, Jülich, Germany; 3Medical Faculty, RWTH Aachen, Aachen, Germany;
4Faculty of Biology, University of Freiburg, Freiburg, Germany; 5Bernstein
Center Freiburg, Freiburg, Germany
E-mail: birgit.kriener@umb.no
BMC Neuroscience 2013, 14(Suppl 1):P123

Pattern formation, i.e., the generation of an inhomogeneous spatial activity
distribution in a dynamical system with translation invariant structure, is
a well-studied phenomenon in neuronal network dynamics, specifically
in neural field models. These are population models to describe the
spatiotemporal dynamics of large groups of neurons in terms of macroscopic
variables such as population firing rates. Though neural field models are
often deduced from and equipped with biophysically meaningful properties,
a direct mapping to simulations of individual spiking neuron populations is
rarely considered. Here, we consider networks with regular topologies, such
as rings and lattices, where neuron positions are distributed on regular grids.
Neurons have a distinct identity defined by their action on their
postsynaptic targets, i.e., they act either excitatorily or inhibitorily. When
the distribution of neuron identities is assumed to be periodic, pattern
formation can be observed, given the coupling strength is supercritical,
i.e., larger than a critical weight.
Intriguingly, this critical weight is strongly dependent on the characteristics
of the neuronal input, i.e., it depends on whether neurons are mean-driven
or fluctuation-driven, and very different linearizations of the full non-linear
system are relevant in order to assess stability.
We present and analyze these two linearizations, one that is derived
directly from the leaky integrate-and-fire dynamics [1], the other from
linear response theory in the diffusive coupling limit [2,3]. In the subcritical
weak-coupling regime both approaches describe the firing rates of
individual neurons with equally good precision, and by analysis of the
respective linear stability we can predict under what conditions the system
becomes unstable to spatial perturbations, and which spatial firing pattern
will be assumed.
We moreover analyze the effect of structural randomness by rewiring
individual synapses or redistributing weights.
Acknowledgements: We gratefully acknowledge funding by the eScience
program of the Research Council of Norway under grant 178892/V30
(eNeuro), the Helmholtz Association: HASB and portfolio theme SMHB,
the Next-Generation Supercomputer Project of MEXT, EU Grant 269921
(BrainScaleS), and by the BMBF grant 01GQ0420 (BCCN Freiburg). All network
simulations were carried out with NEST (http://www.nest-initiative.org).
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In standard ideal-observer models of sensory cue integration [1], the
perceptual estimate resulting from the combination of two cues lies in the
interval bounded by the estimates of each cue separately. For example, this
type of model accounts well for the psychophysical result - observers give
an estimate in-between the haptic-alone and the visual-alone estimates,
when asked to estimate ridges height with both vision and touch [2].
Nevertheless, a class of perceptual illusion is supposedly not accounted for
by this type of model, namely contrast illusion, such as the size-weight
illusion [3,4]. In the size-weight illusion, when asked to estimate the weight
of two objects of the same mass but not the same size, observers estimate
the larger as lighter. Using standard ideal-observer models, we showed that
it is possible to account for this class of illusion provided that statistical
correlation between each cue estimate is taken into account. Our argument
is based on statistical inference models such as linear minimum-variance
unbiased estimation, maximum a posteriori estimation, and least relative
surprise estimation. This psychophysical model is general as long as the
perceptual estimate deals with a physical quantity that is proportional to
another physical quantity also available as a cue, such as mass and volume
for a given material in the size-weight illusion.
Acknowledgements: We thank Marc Ernst and Cesare Valerio Parise for
fruitful discussions. This work was supported by the European Research
Council (FP7 Programme) ERC Advanced Grant agreement no. 247 300.
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Over the last couple of years, supercomputers such as the Blue Gene/Q
system JUQUEEN in Jülich and the K computer in Kobe have become
available for neuroscience research. These massively parallel systems open
the field for a new class of scientific questions as they provide the
resources to represent and simulate brain-scale networks, but they also
confront the developers of simulation software with a new class of
problems. Initial tests with our neuronal network simulator NEST [1] on
JUGENE (the predecessor of JUQUEEN) revealed that in order to exploit the
memory capacities of such machines, we needed to improve the
parallelization of the fundamental data structures. To address this, we
developed an analytical framework [2], which serves as a guideline for a
systematic and iterative restructuring of the simulation kernel. In
December 2012, the 3rd generation technology was released with NEST
2.2, which enables simulations of 108 neurons and 10,000 synapses per
neuron on the K computer [3].
Even though the redesign of the fundamental data structures of NEST is
driven by the demand for simulations of interacting brain areas, we do not
aim at solutions tailored to a specific brain-scale model or computing
architecture. Our goal is to maintain a single highly scalable code base that
meets the requirements of such simulations whilst still performing well on
modestly dimensioned lab clusters and even laptops.
Here, we introduce the 4th generation simulation kernel and describe
the development workflow that yielded the following three major
improvements: the self-collapsing connection infrastructure, which takes
up significantly less memory in the case of few local targets, the
compacted node infrastructure, which causes only negligible constant
serial memory overhead, and the reduced memory usage of synapse
objects, which does not affect the precision of synaptic state variables. The
improved code does not compromise on the general usability of NEST and
will be merged into the common code base to be released with NEST 2.4.
We show that with the 4g technology it will be possible to simulate
networks of 109 neurons and 10,000 synapses per neuron on the K
computer.
Acknowledgements: Partly supported by the early access to the K
computer at the RIKEN Advanced Institute for Computational Science, by the
VSR computation time grant JINB33 on the JUGENE and JUQUEEN
supercomputers in Jülich, the Alliance on Systems Biology, Initiative and
Networking Fund and Portfolio theme SMHB of the Helmholtz Association,
the Jülich-Aachen Research Alliance (JARA), the Next-Generation
Supercomputer Project of MEXT, EU Grant 269921 (BrainScaleS), Research
Council of Norway Grant 178892/V30 (eNeuro) and access to NOTUR
supercomputing facilities. All network simulations carried out with NEST
(http://www.nest-initiative.org).
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Correlated neural activity is a known feature of the brain [2] and evidence
increases that it is closely linked to information processing [1]. In our recent
work we have shown how to map different network models, including
binary networks, onto linear dynamics [4]. For binary neurons the mean-field
approach takes random fluctuations into account to accurately predict the
average activity in such networks [5]. Expressions for covariances follow
from a master equation [3]. Binary neurons with a Heaviside gain function
are inaccessible to the classical treatment [3]. Based on our earlier
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preliminary results [6] here we show how random fluctuations generated by
the network effectively linearize the system of binary neurons, including the
case of the Heaviside gain function, and how they implement a self-
regulating mechanism which renders population-averaged covariances
independent of the synaptic coupling strength. Figure 1A, B illustrate this
invariance.
The mechanism is based on the increase of fluctuations in the input signal
in proportion to the synaptic weight. The fluctuations cause portions of
the gain function with smaller slope to be visited more frequently,
effectively reducing the transmission gain. This keeps the linearized system
away from instability, with the eigenvalues of its effective connectivity
matrix bounded by a constant less than unity (see Figure 1C). Although of
local origin the mechanism controls global features of the network
dynamics.
Acknowledgements: We gratefully acknowledge funding by the Helmholtz
Association: HASB and portfolio theme SMHB, the Next-Generation
Supercomputer Project of MEXT, EU Grant 269921 (BrainScaleS). All network
simulations were carried out with NEST (http://www.nest-initiative.org).
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The Basal Ganglia represent subcortical structures that have a crucial role
in determining when a given motor program should be selected and

called into action [1]. The input region of the Basal Ganglia (the striatum)
contains several distinct cell types. 90-95% of them are medium spiny
projection neurons (MSNs) that have high threshold for activation and
represent the sole source of the output. There is also a small population
of fast-spiking interneurons (FSIs) that receive inputs from a wider range
of distinct cortical regions compared to projection neurons [2]. Two
sources of GABAergic inhibition onto MSNs are the feedforward inhibition
via the FSIs and the feedback inhibition from the axon collaterals of the
MSNs themselves. Feedforward inhibition is very powerful and may filter
cortical information transmitted by striatal projection neurons [3]. In
contrast, feedback inhibition between pairs of MSNs acts predominantly
at the distal dendrites, but may still significantly control the overall level
of activity of the spiny neurons [4].
We simultaneously recorded local field potentials (LFPs) in the cortex and
striatum in order to determine how striatum processes cortical neuronal
avalanches. Cortical neuronal avalanches represent activity clusters with a
cluster size distribution that follows a power law with exponent -1.5 [5].
Analysis of experimental data revealed that activity clusters in striatum also
follow power law distributions, but with an exponent significantly lower
than what is observed in the cortex [6]. To understand what controls the
LFP statistics observed in experiments, we developed an abstract model of
the cortico-striatal network. We investigated to what extent the connectivity
pattern between cortex and striatum as well as the inhibition within
striatum can explain the experimental results [7]. Our model predicts that
striatal inhibition plays a prominent role in shaping the observed striatal
dynamics and decorrelating the striatal responses to cortical neuronal
avalanches. To understand the contribution of feedforward vs feedback
inhibition to the dynamics, we extended our abstract model to spiking
networks. We used the model to quantify the role of feedback and
feedforward inhibition for decorrelating MSNs, and preliminary results
suggest that FSIs play a significant role.
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Figure 1(abstract P164) A Zero time-lag cross covariance averaged over pairs of excitatory (black) and inhibitory (light gray) cells and of one
excitatory and one inhibitory neuron (gray) in simulation (dots) and theory (lines). B Cross covariance functions averaged as in A (same gray code)
obtained from simulations at one coupling strength. Crosses show the analytical prediction. C Set of eigenvalues of a random connectivity matrix after
linearization (black dots) with the corresponding spectral radius (gray circle) and the maximum radius for any synaptic strength (light gray circle).
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Well organized spatio-temporal low-frequency fluctuations (< 0.1 Hz),
observed in blood-oxygen-level-dependent (BOLD) signal during rest, have
been used to map several consistent resting state networks (RSNs) in the
brain [1-3]. It has been hypothesized that these correlated fluctuations
reflect synchronized variations in neural activity of particular brain areas,
which are dynamically coupled to one another forming functional
connections within networks of brain. Furthermore, it has been suggested
that resting state functional connectivity (FC) is strongly shaped by
underlying anatomical connectivity (AC). However, although RSNs reflect
anatomical connections between brain areas comprising the networks in
focus, FC cannot be understood in those terms alone [4]. Here, we
combine experimental and modeling approach to investigate dynamics
underlying correlated behavior of distant cortical regions and formation of
the so called functional networks. We aim to address complicated interplay
between network structure, dynamics of its components and emerging
global behavior, as key ingredients of the networks complexity [5]. We
study how functional connectivity arise from anatomical connections and
compare obtained data with the networks simulated on the empirically
derived FC networks from resting state fMRI data. We compare two
distinctive networks: one with 90 brain regions defined using the
Automated Anatomical Labeling (AAL) template [6], and another with 100
regions organized into seven distinctive resting state functional networks
[7]. We choose to model local network dynamics by excitable FitzHugh-
Nagumo oscillators subject to uncorrelated white Gaussian noise and time-
delayed interactions to account for the finite speed of the signal
propagation along the axons. We discuss FC between brain regions
without apparent anatomical connections, exploring dynamics that
underlie these correlations.
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How could phasic variations in dopamine level affect the learning outcome
of a spiking neural network? How may neuromodulation affect the
network’s instantaneous response to simultaneously arriving glutamatergic
inputs? How may this depend on the brain regions involved?
In our spiking phenomenological model for signal transmission across the
synapse and along the dendritic tree, we propose a new approach for
the influence of dopamine-like neuromodulators on the ascribed aspects,
which unifies diverging views on its role in (reinforcement) learning and
(attentional) contrast.
We call into question the common practice of simulating dopaminergic
influence on an STDP rule as a third factor, and instead show how an
instantaneous effect of a dopamine-like neuromodulator on postsynaptic
activity can also lead to reinforced learning outcomes.
As the phasic change of neuromodulator needs to be present during
glutamatergic transmission in our model, we do not account for delayed
reward as stated in the distal reward problem. Instead, we assume an
involvement of hippocampus and cortical working memory for long delays
of reward. However, as our transmission-based model does not interfere
with the standard two-factor STDP rule, it may be freely combined with
existing extensions to STDP if needed.
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Thomson and Kristan investigated in their study [2] the encoding of
stimulus location based on two P cells with overlapping receptive fields
and analyzed the differences of their spike counts and latencies. They
found that latency differences allow reliable discrimination of touch
locations with a distance of 4°. In contrast, discrimination based on spike
count differences requires a touch location distance of 13°.
In order to investigate how the three types of leech mechanosensory cells
respond to tactile stimulation, we recorded intracellularly from pairs of
these neurons while stimulating the skin mechanically. Tactile stimuli
varied in intensity and location. Responses of cell pairs were analyzed by
calculating the differences of latencies and of spike counts. Discrimination
performance was evaluated for location distances and intensity differences
based on a pair-wise classification.
We found:
1. All three types of mechanosensory cells respond to strongly overlapping
intensity ranges (≥ 50 mN). Spike count and response latency of all cell
types depend on touch intensity as well as location. These results suggest
that N cells could be involved in the encoding of touch stimuli.
2. For the estimation of touch location, we found in agreement with
Thomson and Kristan [2] that latency difference of both P cells leads to
reliable classification of small touch location distances, when touch stimuli
of higher intensities (e.g. 50 mN) are used. Locations of touch stimuli of
lower intensities (e.g. 10 mN) can better be discriminated based on latency
difference of two T cells. Combinations of T and P cell responses do not
improve discrimination.
3. Stimulus intensities are optimally discriminated by spike counts of single P
cells. Relative response features do not improve the estimation of intensity,
neither for pairs of the same type nor for different cell types.
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With the growing availability of multi-unit recordings there is increasing
demand for methods which provide the possibility to study similarity
patterns of activity across many neurons. Accordingly, a wide variety of
approaches to quantify the similarity (or dissimilarity) between two or more
spike trains has been suggested. Recently, the ISI- and the SPIKE-distance
[1,2] have been proposed as parameter-free and time-scale independent
measures of spike train synchrony. The key property of both measures is
that they are time-resolved since they rely on instantaneous estimates of
spike train dissimilarity. This makes it possible to track changes in
instantaneous clustering, i.e., time-localized patterns of (dis)similarity among
multiple spike trains. The SPIKE-distance also comes in a causal variant [2]
which is defined such that the instantaneous values of dissimilarity are
defined from past information only so that time-resolved spike train
synchrony can be estimated in real-time.
For both the regular and the real-time SPIKE-distance, there are several
levels of information reduction [3]. The starting point is the most detailed
representation in which one instantaneous value is obtained for each pair
of spike trains. This results in a matrix of size ‘number of sampled time
instants’ × ‘squared number of spike trains’ (i.e. #(tn)N

2). By selecting a pair
of spike trains one obtains a bivariate dissimilarity profile whereas the
selection of a time instant yields an instantaneous matrix of pairwise spike
train dissimilarities which can be used to divide the spike trains into
instantaneous clusters, i.e., groups of spike trains with low intra-group and

high inter-group dissimilarity. Another way to reduce the information is
averaging. The spatial average over spike train pairs yields a dissimilarity
profile for the selected (sub)population, whereas temporal averaging leads
to a bivariate distance matrix for the selected interval or the selected
trigger points. Finally, application of the remaining average results in one
distance value which describes the overall level of synchrony for a group
of spike trains over a given time interval.
The Matlab source codes for calculating and visualizing both the ISI- and the
SPIKE-distance have been made publicly available and have already been
widely used in various contexts. However, the use of these codes is not very
intuitive and their application requires some basic knowledge of Matlab.
Thus it became desirable to provide a more user-friendly and accessible
interface. Here we address this need and present the graphical user
interface SPIKY [4,5]. This interactive program facilitates the application of
the ISI- and the SPIKE-distance to both simulated and real data. SPIKY
includes a spike train generator for testing purposes, as well as masks for
selecting the analysis window and the neuronal subpopulation of interest.
Once given a set of spike train data, it calculates the desired measure and
allows visualization of all the different representations mentioned above
(such as measure profiles and pairwise dissimilarity matrices). It even
includes the possibility to generate movies which are very useful in order to
track the varying patterns of (dis)similarity. Finally, we also have increased
the high computation speed even further by transferring the most time-
consuming parts of the original Matlab code to Matlab executables (MEX)
with the new subroutines written in C.
Acknowledgements: NB and TK acknowledge funding support from the
European Commission through Marie Curie Initial Training Network
‘Neural Engineering Transformative Technologies (NETT)’, project 289146.
TK would like to thank the Italian Ministry of Foreign Affairs for support
regarding the activity of the Joint Italian-Israeli Laboratory on
Neuroscience.
References
1. Kreuz T, Haas JS, Morelli A, Abarbanel HDI, Politi A: Measuring spike train

synchrony. J Neurosci Methods 2007, 165:151-161.
2. Kreuz T, Chicharro D, Houghton C, Andrzejak RG, Mormann F: Monitoring

spike train synchrony. J Neurophysiol 2013, 109:1457-1472, Doi: 10.1152/
jn.00873.2012.

3. Kreuz T: SPIKE-distance. Scholarpedia 2012, 7:30652.
4. Kreuz T, Bozanic N: SPIKY: A graphical user interface for monitoring spike

train. preparation 2013.
5. SPIKY, as well as information about its implementation can be found

under. [http://www.fi.isc.cnr.it/users/thomas.kreuz/sourcecode.html].

P226
Synfire chains and gamma oscillations: two complementary modes of
information transmission in cortical networks
Gerald Hahn1, Alejandro F Bujan2*, Yves Fregnac1, Ad Aertsen2, Arvind Kumar2
1Unité de Neuroscience, Information et Complexité (U.N.I.C), CNRS, Gif sur
Yvette, UPR 3293, France; 2Bernstein Center Freiburg, Neurobiology &
Biophysics, Faculty of Biology, University of Freiburg, Freiburg im Breisgau,
79014, Germany
E-mail: alejandro.bujan@bcf.uni-freiburg.de
BMC Neuroscience 2013, 14(Suppl 1):P226

Background: The cortex is thought to process sensory stimuli from the
environment by flexible routing of neuronal activity across a hierarchy of
functionally specialized neuronal networks. This routing necessitates
mechanisms that allow for high fidelity communication of neuronal activity
between these networks [1]. It was suggested that synchronization of
spiking activity plays a pivotal role in this communication process, based
on which two seemingly different mechanisms were proposed. The synfire
chain hypothesis postulates the existence of highly organized divergent/
convergent connections, which allow the generation and faithful
transmission of synchronous spike volleys generated by common drive
from presynaptic neurons [2]. By contrast, another model proposes that
communication between different brain areas is achieved by creating
consistent phase relations between population level oscillations entrained
by distinct neuronal networks. These oscillations emerge as a consequence
of local interactions between excitatory and inhibitory neurons. So far,
synchronization driven by oscillations and synchronization due to a
common drive have been considered as dynamical processes of a different
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nature. Here, we outline a new theoretical framework, which views the
appearance of coherent oscillations as a manifestation of common input
synchrony spreading along diluted feed-forward networks (FFNs), which,
initially, fail to create stable propagation of excitatory spike volleys due to
insufficient weight and number of connections. We have tested this
working hypothesis by implementing numerical simulations of diluted
FFNs. In our network model, each FFN group consisted of recurrently
connected leaky integrate-and fire neurons with an excitation-inhibition
ratio of 4:1.
Results: In our simulations, external stimulation with rhythmic pulse
packets was followed by network activity oscillations, which were a
consequence of mutual interactions between the excitatory and inhibitory
pools. These oscillations progressively amplified in strength with each new
input presentation. They synchronized excitatory activity in each FFN pool
and facilitated the propagation of excitatory spike volleys along weak and
sparse divergent/convergent connections. Several oscillation cycles were
needed to transmit spike volleys across the entire FFN in contrast to
synfire activity, in which excitation is propagated in one sweep. We also
hypothesized that the precise timing inherent to coherent oscillations may
induce synaptic potentiation, which would reduce the number of
oscillation cycles necessary to propagate synchrony and drive the network
towards synfire chain dynamics. Indeed, our simulations confirmed that an
increase of synaptic weights between groups of the FFN transformed
oscillation chains into classical ‘synfire chains’, in which synchrony was
transmitted in a single wave. In summary, we propose a conceptual link
between the concepts of synfire chains, coherent oscillations and synaptic
plasticity. We suggest that coherent oscillatory dynamics presents an
immature case of spike volley transmission across multiple neuronal
networks, which may lead to secured transmission, without the need for
oscillations, via the results of synaptic plasticity.
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The interaction of activities at multiple levels, ranging from molecular to
cellular to network level, is a fundamental aspect of information processing
in the brain. In vitro studies show that the firing patterns of neurons in
response to an input current are highly diverse. Recent experimental data
suggest that parvalbumin and somatostatin expressing interneurons,
differing in their connectivity and firing patterns, influence the orientation
selectivity of pyramidal neurons differently. However, under which
conditions low-level neuron properties like spiking patterns affect the
network activity dynamics remains to be understood. Therefore, we
studied the dynamics of spiking neuronal networks (SNN) by systematically
varying the firing pattern of inhibitory interneurons from fast spiking to
bursting, keeping the excitatory population as regular spiking.
In an SNN with sparse and homogeneous connectivity, global network
properties such as population synchrony and mean firing rates did not
show significant differences with variations in the type of inhibitory
neurons. Interestingly, local properties such as burstiness of the individual
neurons were determined by the global network state for instance in the
asynchronous activity state both fast spiking neurons and bursting
neurons exhibited similar spiking patterns. Thus, the global network state,
instead of the neurons’ intrinsic properties, determined the spiking pattern
of the neurons.

Because the effect of neuronal spike patterns could be obscured by the
random and homogeneous connectivity, we considered two specific
deviations: First we introduced hubs into the network by allowing the fast
spiking and bursting neurons to form up to eight times more connections.
The overall out degree in such a network with hubs was kept the same as
in the random homogeneous networks. Such topology did not affect the
network dynamics qualitatively.
Next, we separated the inhibitory population into two sub-populations,
connected in feedforward (FF) and feedback (FB) manner. With this
connectivity scheme, we initially found that neuronal spike patterns can
affect the oscillation frequency of the population activity if the fast spiking
inhibitory neurons were present as the FB population and FF population
was altered between the various ratios of fast spiking and bursting
neurons. However, the differences in the oscillations frequency could be
attributed to the different gain of the two types of neurons. That is, it was
an effect of differences in the degree of recurrent inhibition and not that
of spiking activity patterns.
In summary, our results suggest that for random homogeneous and the two
types of inhomogeneous recurrent SNNs, the individual neuronal patterns
do not affect the global dynamics. Any differences in global dynamics with
change in single neuron firing patterns is due to the ensuing difference in
the firing rate of the neuron types. On the other hand, the global activity
state influenced the local parameters like burstiness.
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A typical Go/No-Go decision is thought to be implemented via the
activation of direct and indirect pathways in the basal ganglia. Indeed,
optogenetic activation of the direct pathway increased ambulation,
whereas that of the indirect pathway induced freezing [1]. Striatal
neurons participating in these two pathways express D1 and D2 type
dopamine receptors [2]. Furthermore, D1 and D2 expressing MSNs also
differ in their passive properties [2] and recurrent connectivity [3]. To
understand striatal function it is, therefore, important to identify factors
that regulate the balance of activity in D1 and D2 MSNs. Here we used
both, a reduced firing rate model and numerical simulations of the
striatal networks to study the dynamic balance of spiking activity in D1
and D2 MSNs.
Specifically, we show that: (i) Because D1 MSNs receive higher recurrent
inhibition from FSIs [4] and D2 MSNs [3], they require a stronger cortical
drive to overcome this inhibition. (ii) D1 and D2 firing rates change non-
monotonically as a function of cortical input rates. For small cortical input
rates, D1 MSNs have higher firing rates than D2 MSNs, due to the stronger
synaptic input from cortex. For higher cortical input rates, D2 MSNs activity
surpasses D1 MSN activity because cortical input rate is no longer
sufficient to balance the strong inhibition coming from FSIs. The cortical
rate at which D2 MSNs activity exceeds that of D1 MSNs is termed the
decision threshold. (iii) The decision threshold depends on the strength of
cortico-striatal synapses and the firing rate of FSIs. (iv) The STN could
control the decision threshold via the massive pallidostriatal back-
projections [5], via inhibition of the FSIs. (v) Finally, the difference between
D1 and D2 firing rates is also modulated by the input correlations [6].
These observations help us to explain several experimental and behavioral
findings involving the basal ganglia. The model suggest that under
dopamine depletion conditions, even for weak cortical inputs, D2 MSNs
activity is higher than D1 MSNs, which is consistent with the fact that
Parkinson’s disease (PD) patients have difficulty in initiating voluntary
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actions. We also observed that dopamine depletion reduced the parameter
regime supporting D1 MSNs activation, by shifting the decision threshold
towards lower cortical inputs. This suggests that under dopamine-depleted
conditions, the striatum would require arbitration by the STN-GPe network,
even for a low conflict task, providing a plausible explanation of increased
reaction times in PD patients. Finally, increased activity in GPe under the
influence of deep-brain stimulation (DBS) could also reduce the activity of
FSIs on an average, thus shifting the decision threshold towards higher
cortical input rates. Taken together, the model provides a mechanistic
explanation of impulsive behavior in PD patients with DBS.
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The neuronal network of the nematode Caenorhabditis elegans (C. elegans) is
comprised of 302 sensory, motor and inter-neurons. Near-complete
connectivity data for the gap junctions and chemical synapses connecting
these neurons (its connectome) have been resolved [1]. In addition, current
experiments measure the response of various neurons to input stimuli. A
description of these responses cannot be drawn from the static connectivity
data alone. These studies suggest that computational modeling can assist in
describing neural dynamics and their relation to the connectome. However,
simulations of C. elegans neural dynamics are challenging since the single
neuron dynamics do not appear to be characterized by standard spiking
neuron models. Indeed, genomic sequencing and electro - physiological
studies have consistently failed to observe classical Na+ action potentials in
C. elegans neurons [2].
Our study combines the known connectome data [1] with a physiologically
appropriate neuron model [3] to simulate the dynamics of the full neural
network in response to stimuli over time. We model single neuron dynamics
by graded electrical potentials using the findings of electrophysiological
studies and biophysical considerations [3]. Since the parameters of the
model are not well known, we first investigate their effect on the behavior
and stability of the system. We use a genetic algorithm to explore this high
dimensional parameter space. Once the parameters are set, we investigate
the input-to-output response of the network. Specifically, we stimulate input
sensory neurons, as is often done in experiments, and characterize
the response elicited in the network. This is the first study of its kind
computationally relating the sensory input with the resultant dynamical
behavior of the inter- and motor-neurons. Figure 1 shows a prototypical
example of the neural response when a chemosensory neuron AQR

positioned in the head receives periodic input. A dominant pathway
(A®B®C) shows how the signal propagates through inter-neurons to the
tail chemosensory neurons PHAL/R. This example demonstrates that AQR
and PHAL/R are highly correlated even with no direct static connection in
the connectome. We call such a connection a “dynamical connection”
between neurons, and our computational study discovers such dynamical
connections.
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Prior to receiving visual stimuli, spontaneous, correlated activity called retinal
waves drives activity-dependent developmental programs. Early-stage waves
mediated by acetylcholine (ACh) manifest as slow, spreading bursts of action
potentials. They are believed to be initiated by the spontaneous firing of
Starburst Amacrine Cells (SACs), whose dense, recurrent connectivity then
propagates this activity laterally. Their extended inter-wave intervals and
shifting wave boundaries are the result of the slow after-hyperpolarization of
the SACs creating an evolving mosaic of recruitable and refractory cells,
which can and cannot participate in waves. Recent evidence suggests that
cholinergic waves may be modulated by the extracellular concentration of
ACh [1].Here, we have constructed a simplified, yet biophysically realistic,
reaction-diffusion model of cholinergic retinal waves capable of recapi-
tulating wave dynamics observed in mice retina recordings (Figure 1A). The
dense, recurrent connectivity of SACs is modeled through local, excitatory
coupling occurring via the volume release and diffusion of ACh. This novel
approach is used to determine how extracellular ACh may modulate wave
activity. In contrast with previous, simulation-based models (e.g. the model
of Hennig [2]), we are able to use non-linear wave theory (traveling fronts,
pulses, singular perturbation analysis, etc.) to connect wave features
to underlying physiological parameters, making our model useful in
determining appropriate pharmacological manipulations to experimentally
produce waves of a prescribed spatiotemporal character (Figure 1B).
This is the first mathematical analysis of its type on retinal waves. However,
a number of theoretical issues remain unresolved. The distribution of wave
sizes has been reported to obey a power-law distribution, suggesting the
developing retina may exist in a critical state [2]. Are these findings
compatible with our theoretical model? We present preliminary results
suggesting that our model possesses a configuration in which wave sizes
are distributed according to a power-law (Figure 1C). We adapt analyses
typically used in neural field equations to understand the effects of
stochasticity and heterogeneity on wave size statistics [3], and therefore
provide theoretical arguments characterizing the potential for criticality in
retinal development.
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identical. Therefore, spontaneous population activity fluctuations display
highly non-random features, boosting TCs by shifts and multiplicative
factors that gate information processing.
Results: We found that TCs are shifted and scaled by a multiplicative factor
proportional to mean population activity (Figure 1A). The amount of each
contribution was neuron dependent. We studied whether the scaling in the
TCs induced by population activity fluctuations had an impact on
information processing. To this end, we decoded orientation on a trial-by-trial
basis from neuronal activity as a function of population activity (Figure 1B).
We found that higher mean population activity resulted in better decoding
accuracy. This result is surprising because the amount of information
conveyed by V1 neurons, even for the same stimulus, depends on the mean
population activity.
Methods: The observed boosting properties of TCs motivated us to build
a statistical model with Poisson-like neurons that includes a multiplicative
scaling factor (PS). We observed that the effect of population activity on
TCs is not purely multiplicative, and we introduced therefore a shift (PSS).
Our models approached the performance of state-of-art decoding
techniques (SVM, and logistic regression -LR-) and provided higher
accuracy than other tested decoders based on population vector and
independent Poisson neurons. Experimental methods are as in [1].
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Recurrent circuits of simple model neurons can provide the substrate for
cognitive functions such as perception, memory, association, classification or
prediction of dynamical systems [1-3]. In Alzheimer’s disease (AD), the
impairment of such functions is clearly correlated to synapse loss [4]. So far,
the mechanisms underlying this correlation are only poorly understood.
Here, we investigate how the loss of excitatory synapses in sparsely
connected random networks of spiking excitatory and inhibitory neurons [5]
alters their dynamical and computational characteristics. By means of

simulations, we study the network response to noisy variations of
multidimensional spike-train patterns.
We find that the loss of excitatory synapses on excitatory neurons (decrease
in excitatory-excitatory indegree; vertical arrow in Figure 1) lowers the
network’s sensitivity to small perturbations of time-varying inputs, reduces
its ability to discriminate and improves its generalization capability [6].
A full recovery of the network performance can be achieved by firing-rate
homeostasis, implemented by scaling up the remaining excitatory-excitatory
synapses (horizontal arrow in Figure 1). Homeostasis may therefore explain
the absence of clinical symptoms in early AD, despite cortical damage. The
onset of clinical symptoms may result from an exhaustion of homeostatic
resources.
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Higher cognitive functioning is assumed to be largely symbolic/
representational and compositional in nature. At various processing stages,
from perceptual to motor, discrete structural elements with intricate
temporal dependencies are combined into increasingly complex constructs
[1]. Mapping such complex computational processes to the underlying
neuronal infrastructure and assessing the properties of the neuronal
system responsible for their implementation is not straightforward, but it is
likely to yield important insights into the nature of neural computation.

Figure 1(abstract P281) A: TCs conditioned to four different mean population activity bins, ranging from high mean population activity (upper line) to low mean
population activity (lower line). B: Decoding performance of stimulus orientation as a function of mean population activity for four different decoding models.
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In order to address these issues, we adopt ideas and formalisms developed
by theoretical linguistics to study the nature of rule-like or compositional
behavior in the language domain, namely the acquisition of formal (artificial)
grammars. The Artificial Grammar Learning (AGL) paradigm has a long
tradition in psycholinguistic research (see, e.g. [2] for an overview), as a
means to study the nature of syntactic processing and implicit sequence
learning.
With mere exposure and without performance feedback, human beings
implicitly acquire knowledge about the structural regularities implemented
by complex rule systems.
In this work, we investigate to which extent generic cortical microcircuits can
support formally explicit symbolic computations, instantiated by the same
grammars used in the human AGL literature and implementing various
types of local and non-adjacent dependencies between the sequence
elements, thus requiring varying degrees of computational complexity and
online processing memory to be adequately learned. We use concrete
implementations of input-driven recurrent networks composed of noisy,
spiking neurons, built according to the reservoir computing framework
and dynamically shaped by a variety of synaptic and intrinsic plasticity
mechanisms operating concomitantly [3]. Additionally, we compare
supervised and unsupervised learning rules for the decoding algorithms,
with varying degrees of biological plausibility. We show that, when shaped
by plasticity, these models are capable of acquiring the structure of simple
(regular) grammars. When asked to judge string legality (in a manner similar
to human subjects), the networks perform at a qualitatively comparable
level. We uncover which plasticity mechanisms are crucial for the task, with
the aim of specifying a minimal model. Furthermore, the capability of the
networks to process (bounded) recursive constructions including multiple
patterns of non-adjacent dependencies accurately reflects recent results of
human performance, highlighting inherent limitations imposed by the
nature of neuronal processing.
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Junior Professor Program of Baden-Württemberg, the Helmholtz Alliance on
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In the past two decades, significant advances have been made in under-
standing the structural and functional properties of biological networks using
graph-theoretic analysis. In general, most graph-theoretic studies are
conducted in the presence of serious uncertainties, such as major under-
sampling of the experimental data. In the specific case of neural systems,
however, a few moderately robust experimental reconstructions do exist, and
these have long served as fundamental prototypes for studying connectivity
patterns in the nervous system. Here, we provide a comparative analysis of
several “historical” graphs, including areal connectivity graphs of the cat and
macaque monkey cortex [1-3], as well as the neural connectivity graph of the
nematode C. elegans [4,5].
While it is a common practice in applying graph-theoretic measures
to empirical data to symmetrize the connectivity matrix prior to analysis,
here we work with the graphs both in their unmodified directed, and
symmetrized undirected forms, focusing on simple structural characteri-
zations of their connectivity. This characterization includes the node degree
distributions, the structural equivalence of graph nodes, as well as a nearest
neighbor degree and assortativity analysis. All utilized measures are defined
for directed graphs, but yield their forms known from the literature when
applied to undirected graphs [6,7].
We find that the investigated networks share a strong component of
randomness in their structural makeup, suggesting a mechanism of their
formation which is much less constrained than that required for scale-free
graphs. Specifically, fits of the node degree distributions are in accordance
with a gamma model, supporting the idea of a simple local mechanism
responsible for generating neural graphs. Secondly, the Euclidean distance
of node adjacencies and node degree correlations are consistent with
a independent random distribution of node connections for different
nodes, but with strong correlations between in-coming and out-going
connections for the same node. Finally, we find a weak disassortative
tendency in the considered graphs, suggesting that in biological neural

Figure 1(abstract P282) Loss of excitatory-excitatory synapses (vertical arrow) impairs discrimination capability (gray coded). Recovery of
discrimination capability by firing-rate homeostasis (scaling up remaining excitatory-excitatory synapses; horizontal arrow).
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mechanisms have been reported at several sites of the cerebellar model
circuitry, thus including plasticity mechanisms not just at parallel fibers (a
well-accepted plasticity site) but also at synaptic inputs of deep cerebellar
nuclei (DCN) (from mossy fibers (MFs) [1,2]and Purkinje cells (PCs) [3,4]).
The Marr and Albus model already hypothesized that parallel fiber (PFs)
®Purkinje cell synapses presented both long-term potentiation (LTP) [5,6]
and long-term depression (LTD) [5-7] plasticity so as to correlate the
activity at parallel fibers with the incoming error signal through climbing
fibers. Nevertheless, in subsequent studies, it has been demonstrated that
many sites in the cerebellum show traces of plasticity [8-10]. But the way
in which those distributed plasticity mechanisms may improve the
operational capabilities of the cerebellum is still an open issue.
In this work we propose that the synaptic plasticity of mossy-fiber-to-deep-
cerebellar-nucleus-cell and Purkinje-cell-to-deep-cerebellar-nucleus-cell
may regulate the effect of Purkinje-cell activity on the cerebellar output,
behaving as a distributed homeostatic mechanism [11]. The plasticity at
the DCN afferents helps to keep the Purkinje-cell activity in an adequate
range independently of the magnitude required for the cerebellar output,
thus improving the precision of this output signal.
Since these plasticity mechanisms are capable of adapting the cerebellar
behavior in the long-term, it is of necessity the presence of fast feedback
for motor activities in order to perform precise movements. Thus, the
presented work also explores the control implication that the inferior-olive-
to-deep-cerebellar-nucleus-cell connection may possess in conjunction
with the previously suggested plasticity mechanisms. As it is widely
assumed, the climbing fiber activity that our cerebellar model implements
is considered to be a teaching signal (targeting Purkinje cells). But we also
explore its potential role as a control signal over the cerebellar output
(targeting the deep cerebellar nuclei).
To investigate all these proposals, we have embedded the cerebellar
model in a feed-forward control loop which is connected to a simulated
3-degree-of-freedom robot model.
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The relation between neural mass signals, like local field potentials (LFP)
or electro-encephalograms (EEG), and the spiking activity of neurons in a
network is still poorly understood. Recently, linear temporal filters have
been used to map multi-unit activity (MUA) to LFP signals recorded at
the same electrode [1]. Similar kernels have been previously identified
relating simulated network activity to the human EEG [2]. However,
currently there are no theoretical/computational models to explain the
form of these filters that map MUA to LFP or EEG.
Here we studied the relation between MUA and LFP in a minimal network
model of the neocortex. Using simplified statistical models of neurons
[3,4], the firing rate response of neuronal populations to time-dependent
inputs can be characterized as that of a high pass filter. At the same time,
the LFP recorded in the neocortex can be interpreted as a measure of the
summated synaptic input to the population of nearby neurons [5], filtered
by the neuronal membranes and the recurrent network [6]. Combining
these various filter operations, we arrive at the forward model (LFP to
MUA) of a band-pass filter, which can be inverted to predict the LFP from
the MUA. Our results explain the form of the experimentally obtained
kernels [1] and provide insight into the encoding of a stimulus by local
neuronal populations. Furthermore, our theory explains characteristic
properties of the neocortical LFP, solely based on effective neuronal
refractoriness, membrane filtering and recurrent connectivity.
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As a first step toward understanding the macro-dynamics of brain-like
systems, we study the large-scale dynamics of balanced random networks of
excitatory and inhibitory integrate-and-fire neurons. Based on the dynamical
equations of the model, a mean field approach was previously employed to
reduce the dimensionality of the network dynamics [1,2]. Here, we analyze
the joint activity dynamics of excitatory and inhibitory populations employing
a pair of mutually interacting nonlinear differential equations. In absence of a
voltage leak for individual neurons, and for negligible synaptic transmission
delay, these equations take the form of Lotka-Volterra equations. These have
been used to describe predator-prey systems, corresponding to excitatory
and inhibitory populations of neurons in our case. For non-zero identical
synaptic transmission delay, we obtain Lotka-Volterra equations with delay.
We try to infer the parameters for the non-autonomous differential equations
given a dataset from numerical simulations of such a network. Moreover, we
attempt to analytically constrain the parameters and compare them with
their statistical estimators. Using simulation results, the significance of the
nonlinear dynamics becomes obvious in the vector field of excitatory-
inhibitory activity, which corresponds nicely with the vector field of the
analytical equations.
We have analyzed the stability of the network considering two bifurcation
parameters: the relative strength of recurrent inhibition, “g”, which
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controls the balance between excitation and inhibition in the network,
and the intensity of external input to the network, “h”. We have found
out that for a value of “g” that keeps the exact balance between
excitation and inhibition, a bifurcation from unstable to stable network
dynamics takes place. This bifurcation separates Synchronous Regular (SR)
from Asynchronous Irregular (AI) activity of the network, similar to what
was found in a previous study on the same network using a Fokker-
Planck approach [3]. The influence of synaptic delays on the reduced
dynamics of the network is currently under study.
It has been shown that Lotka-Volterra equations are capable of representing
switching dynamics between different states of neural networks [2,4]. Our
analysis represents a first step toward analyzing the dynamics of more
complex “networks of networks” that are implicated in various cognitive
abilities of the brain.
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Cortical spike trains in vivo often show a high irregularity, reflected by a
coefficient of variation (CV) close to one [1]. Such irregular single neuron
spiking has consequently been associated with Poisson processes, and many
models involving neuronal spike trains inherited this ideology. This
viewpoint is further supported by the Palm-Khintchine theorem, which
states that a superposition of a large number of renewal processes with very
small intensity behaves like a Poisson process. It was demonstrated,
however, that this theorem doesn’t always apply to the superposition of
neuronal spike trains [2-4]. Moreover, Poisson processes lack the temporal
properties observed in population responses to input modulation either via
a stimulus in vivo [5] or via electrical stimulation in vitro [6].
In this study, we report on new techniques to deal with non-Possonian
aspects of stationary neuronal spike trains, as well as non-equilibrium
population responses [7], based on Markov point processes (MPP),
commonly known as continuous time Markov chains (CTMC). We compute
the interspike interval (ISI) distribution by algebraically solving the first
passage time problem for MPP neuron models, and compute the transient
population responses with a similar technique. The same technique is used
to compute exact cross-correlation functions for a shared input paradigm
[8]. We advertise MPPs as a new powerful framework in neural network
modeling and neural data analysis with many possible applications.
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We investigated the development of topologically organized representations
of a restricted region of skin in the primary somatosensory cortex (SI), more
precisely, area 3b of SI. We devised a computational model based on the
dynamic neural field theory and on an Oja-like learning rule at the level of
feed-forward thalamocortical connections [1]. These connections reach area
3b through subthalamic and thalamic relays that convey information from
the Merkel Ending Complexes (MECs), which are mechanoreceptors of
the skin responsible for information related to touch and pressure. They have
been modeled as a quasi-uniform grid while the rest of the relays have
been neglected. Both the critical and the post-critical periods of the SI
development [2] have been taken into consideration and the latter has been
modeled as a long-term alteration of lateral connections. During the critical
period, SI remains highly plastic and is able to cope with a vast number of
alterations of the environment or of the body itself. This condition goes on
during the post-critical period but in a less effective way [3]. In both periods
SI is capable of reorganization in the presence of a cortical lesion [4] (e.g.
stroke) or a sensory deprivation condition [5] (e.g. limb amputation). In order
to examine if the model is capable of recovery from lesions, both cortical and
sensory, we studied three different types of lesions on SI and on skin. As
expected, the model is able to cope with such degenerative conditions and
is able to recover a lot of the lost functionalities. More precisely, in the case
of cortical lesions, neurons that are not affected can recover some of the lost
representations while in the case of sensory deprivation, neurons that have
lost their preferred input, tend to contribute to neighboring representations.
Hence, the model confirms both cases and the mechanism of balance
between excitation and inhibition seems to be the key for recovery.
Attention is another aspect that has been investigated because of its
prominent role in reshaping receptive fields during execution of demanding
touch perception tasks [6]. In this context we simulated some attentional
mechanisms in order to investigate how attention affects the receptive fields
of the model. In the presence of an attentional signal, the model is able to
gently adapt its receptive fields according to the position of the stimuli on
the skin. On the one hand attention promotes the migration of the distant
receptive fields towards the attended area and on the other hand proximal
to attended signal receptive fields undergo shrinkage.
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whether further coordination is required to account for the observed multi-
cell behaviour.
We developed a descriptive model of phase coding in individual place cells
and used this model to investigate the cell assembly dynamics on a linear
track. Under the assumption of independent phase coding, key experimental
quantities were derived analytically and their relationship to behavioural
variables was analysed and compared to experimental data (e.g., [1]). We
showed that experimentally established relationships between behavioural
variables such as running speed and cell assembly metrics such as the
compression factor and lookahead can be reproduced and understood
analytically in terms of the collective behaviour of independent phase coding
units.
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Short-term synaptic plasticity (STP) is highly varied across brain area, cortical
layer, cell type, and developmental stage (Reyes & Sakmann 1999). This
variability is probably not coincidental and since synaptic dynamics shape
neural computations, it suggests an important role of STP in neural
information processing (Abbott & Regehr 2004). Therefore, an accurate
description of STP is a key step towards a comprehensive understanding of

neural systems. Many phenomenological STP models have been developed
(Markram et al. 1998), but they have typically been fitted to experimental data
using least-mean-square methods. With the Tsodyks-Markram model, we find
that for typical synaptic dynamics such fitting procedures may give erratic
outcomes. A Bayesian formulation based on a Markov Chain Monte
Carlo method was introduced as a solution. This formulation provides
the posterior distribution over the model parameters given the data statistics.
We discovered that standard STP electrophysiology protocols yielded wide
distributions over some model parameters. Based on this result we propose
experimental protocols to more accurately determine model parameters.
Next, the model parameters were inferred using experimental data from three
different neocortical excitatory connection types: Pyramidal Cell-Pyramidal Cell
(PC-PC), Pyramidal Cell-Basket Cell (PC-BC) and Pyramidal Cell-Martinotti Cell
(PC-MC), (see Figure 1). This disclosed connection-specific distributions, which
we used to classify synapses. This approach to determining connection-
specific synaptic dynamics provides a more comprehensive representation of
STP and unveils novel features from existing data.
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The tilt illusion is a well-studied visual phenomenon, whereby the perceived
angle of a center stimulus is misjudged in the presence of a differently
aligned surround stimulus (e.g. [1]). The dependence of V1 neuron activity

Figure 1(abstract P403) Posterior distributions of STP parameters from experimental data from visual cortex layer-5. (A) Sample experimental
STP traces are shown for PC-PC (red), PC-BC (green), and for PC-MC (blue) connections. (B) Marginalized posterior distributions obtained using slice
sampling from the three different excitatory connections show connection-specific distributions. Light colored lines show individual distributions, while
dark colored lines correspond to their average.
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on center-surround interactions has been studied extensively (e.g. [2]). These
center-surround interactions can be used to explain the tilt illusion, as they
result in tuning curve modulations. When population activity is decoded
using these modulated tuning curves, the tilt illusion arises [2]. In this work,
we examine two factors affecting the tilt illusion:
First, we examine is the effect of the tuning curve width on the tilt illusion.
Tuning curves widths vary widely in vivo [3]. Although changes in tuning
curve width due to center-surround interactions have been shown to
potentially contribute to the tilt illusion [2,4], how the tuning curve width
itself affects the illusion is less well understood. Using a firing rate model, we
show here that for narrower tuning curves the tilt illusion lessens, and that it
disappears almost completely for narrow, but still realistic, tuning curves.
Secondly, we consider the consequences of recent experimental findings on
the tuning of surround modulation. Most models assume that V1 neurons
experience most suppression when the surround stimulus is aligned with
the neuron’s preferred orientation. However, a recent study showed that for
the majority of V1 neurons, the suppression effect depends much more on
the relation between center and surround orientation, being strongest when
they are co-aligned, regardless of the preferred orientation [5]. We use a
firing rate model based on [5] to take these new finding into account, and
show that, counter-intuitively, the tilt illusion is not impacted, once we
control for changes in the tuning curve widths.
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On line monitoring and event-driven stimulation are promising techniques
for neuroscience studies, especially in behavioral experiments [1]. Weakly
electric fish have an electric organ and electroreceptors to generate and
detect electric fields [2]. They use their electric pulses to ‘see’ their
environment and also to communicate, changing their inter pulse intervals
depending on the behavioral context. We conducted 2 behavioral
monitoring experiments with Gnathonemus petersii where stimuli were
triggered by (1) the fish position in the tank and (2) the fish’s own
electrical activity.

(1) We built a virtual fence isolating the fish in a given area in the tank,
using a camera and video-event driven stimulation. Fast on line
tracking was achieved by subtracting consecutive frames. When
the fish crossed the virtual fence, electric stimuli were delivered. We
observed that artificial stimuli as high frequency signals were more
efficient to create a virtual fence than pre-recorded Gnathonemus
petersii waveforms from another fish.
(2) We monitored in real time the electrical activity of the fish and
delivered electric pulses. Fish’s electrical activity was acquired in
real time from 5 dipoles by a DAQ board and the pulses from the
fish were detected by a computer. Once a fish ’s pulse was
detected, a 3 V pulse stimulus was delivered to the fish with a
delay τ. Fish responded by shortening their inter pulse intervals
(IPIs) for short τ values (Figure 1A) and discharging longer IPIS
(Figure 1B) or not altering their IPIs for longer τ. We tested τ = 10
ms, 20 ms, 50 ms, 40 ms, 70 ms and 100 ms and we obtained
similar results as shown in Figure 1A and τ = 160 ms, 200 ms, 280
ms, 400 ms with similar results as shown in Figure 1B.
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Figure 1(abstract P405) IPI histograms when the fish was without stimulus for 30 min (dashed lines) and stimulated by a electric pulse sent 20
ms (A) and 200 ms (B) after detecting a pulse from the fish (black and red lines respectively). A. The fish increased its frequency (shorter IPIs)
compared to the control with a new high peak in 11 ms and discharging less 130 ms and 300 ms IPIs. B. There was a decrease in the frequency of the
fish (longer IPIs) under stimulation, the peaks changed from 140 ms to 150 ms and 290 ms to 300 ms.
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