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Abstract
We explore and analyze the nonlinear switching dynamics of neuronal networks with non-

homogeneous connectivity. The general significance of such transient dynamics for brain

function is unclear; however, for instance decision-making processes in perception and cogni-

tion have been implicated with it. The network under study here is comprised of three subnet-

works of either excitatory or inhibitory leaky integrate-and-fire neurons, of which two are of the

same type. The synaptic weights are arranged to establish and maintain a balance between

excitation and inhibition in case of a constant external drive. Each subnetwork is randomly

connected, where all neurons belonging to a particular population have the same in-degree

and the same out-degree. Neurons in different subnetworks are also randomly connected

with the same probability; however, depending on the type of the pre-synaptic neuron, the

synaptic weight is scaled by a factor. We observed that for a certain range of the “within” ver-

sus “between” connection weights (bifurcation parameter), the network activation spontane-

ously switches between the two sub-networks of the same type. This kind of dynamics has

been termed “winnerless competition”, which also has a random component here. In our

model, this phenomenon is well described by a set of coupled stochastic differential equations

of Lotka-Volterra type that imply a competition between the subnetworks. The associated

mean-field model shows the same dynamical behavior as observed in simulations of large

networks comprising thousands of spiking neurons. The deterministic phase portrait is char-

acterized by two attractors and a saddle node, its stochastic component is essentially given

by the multiplicative inherent noise of the system. We find that the dwell time distribution of

the active states is exponential, indicating that the noise drives the system randomly from one

attractor to the other. A similar model for a larger number of populations might suggest a gen-

eral approach to study the dynamics of interacting populations of spiking networks.

Introduction
Animal behavior emerges as a consequence of neuronal interactions and their plastic changes
during learning. Self-organization through plasticity is what makes neuronal networks capable
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of performing computations that serve their biological function. It has long been hypothesized
that groups of neurons interact to achieve higher cognitive functions. It is therefore important
to analyze how groups of neurons dynamically cooperate with each other, and what are the
emergent properties of such interactions. In the crudest simplification, there are just two types
of neurons which mainly establish either excitatory or inhibitory synapses with other neurons
(Dale’s principle [1]). Moreover, it is believed that in the mammalian neocortex there is a non-
random sparse connectivity between neurons [2] and there are clustered structures with stron-
ger synapses and increased connection probability [3], also known as cell assemblies. More-
over, it has been demonstrated that, in the mammalian sensory cortices, Hebbian learning can
increase or decrease the strength of connections between neurons with similar stimulus prefer-
ences [4–7].

Theoretical studies have demonstrated that one of the possible by-products of clustered
connectivity is the emergence of bi/multi-stability (and as a possible consequence, switching
dynamics) between interacting populations [8–12]. There are many examples of bistable phe-
nomena in biological neural networks, such as decision making, binocular rivalry, as well as
spontaneous cortical state switchings (up and down states), particularly noticeable under cer-
tain types of anesthesia. In the following, we point out some examples wherein an attractor net-
work with bistable property can explain the collective dynamics.

The emergence of bistability in an attractor network may serve as a possible explanation for
some of the phenomena involving switching behavior described in experiments, particularly
for processes involved in cognitive functions such as decision-making [10, 11]. Neuronal popu-
lation recordings obtained from decision-associated cortical areas (most prominently from the
lateral intraparietal cortex (LIP) [13]) of awake macaque monkeys during the performance of
perceptual discrimination tasks have revealed a high correlation between changes in single cell
and population activity and the relevant aspects of the animal’s behavior, in particular response
time and perceptual choice [14–16]. To account for these observations, previous studies have
explored simple, binary attractor models of spiking neural networks, composed of distinct sub-
populations [17, 18]. In these models, each attractor corresponds to a distinct alternative of the
decision. Furthermore, it has been reported that an attractor network derived from the envis-
aged energy landscape could, in fact, reproduce the statistics of the competition dynamics [19].

Apart from studies on decision-making, there are other studies indicating that neuronal
population interactions, and particularly competition between them correlates with many
interesting behaviors. It was shown that neuronal activity in the visual cortex correlates with
the perceived image during binocular rivalry [20], a phenomenon that occurs when the two
eyes are exposed to different stimuli. Under this condition, there is a switching dynamics
between the perceived stimuli, and the duration of the percept appears to be stochastic [21].
Reciprocal inhibition between competing neurons has been shown to be fundamental for the
emergence of perceptual switching in binocular rivalry [22, 23]. As another example, in the
auditory system, in the presence of ambiguous stimulation, bistable perception occurs. There
are strong similarities between these sensory systems, suggesting a common principle behind
bistable perception [24].

There is also research on the occurrence of elevated persistent activity, during the delay
period in working memory tasks, which has been hypothesized to be based on the emergence
of attractors in the underlying network [25–27]. In these studies, an external drive is used to
change the network activity and, after the stimulus suppression, the trajectory is attracted to a
different stable fixed point, corresponding to the elevated persistent activity commonly
reported in working memory tasks [28, 29]. In balanced random networks, this kind of dynam-
ics is induced by nonlinear interactions between groups of neurons. Experiments on localiza-
tion and short term memory in behaving monkeys have demonstrated that there are well-
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separated states of activity within which the firing rates are stationary, and cortical activity
switches between these states depending on the stimulus and the behavioral conditions [30].
These global state switches are also highly prominent during the different stages of the sleep
cycle, and under the effect of certain anesthetic agents [31–33]. The stability of these different
states as well as the transitions between them are achieved by the cooperative and concerted
activity of many neurons, making it a collective phenomenon and potentially supporting the
idea of attractor networks as the underlying cause.

Apart from switching dynamics, population interactions under specific conditions result in
oscillatory dynamics that are crucial, for example, for Central Pattern Generators in lower
parts of the nervous system [34], and for the emergence of gamma-band oscillations in cortex
[35–37]. Given the great variety of different dynamical behaviors that can emerge from popula-
tion interactions, it is interesting to come up with a general mathematical framework that is
able to reproduce all these dynamics by changing parameters, and that can be matched to the
population dynamics of spiking neuronal networks. One major problem in analyzing the col-
lective behavior of spiking neural networks is the nonlinear neuronal spiking dynamics due to
threshold, reset and refractory period. A well-known model of population interaction is based
on the concept of an event density in renewal theory and employs sigmoid input-output func-
tions of neural populations when appropriate coarse graining is applied [38, 39]. Threshold-
linear dynamics [40] and integral equations based on renewal theory [41] are alternative meth-
ods of describing and analyzing interacting populations. Each model makes specific assump-
tions about neural dynamics, and is valid only for a specific range of time-scales. However, in
order to be able to describe phenomena like switching dynamics or limit cycle solutions, the
dynamical equations have to be nonlinear. Wilson-Cowan equations [39] are able to replicate
the above-mentioned dynamics for specific parameters. However, it is not clearly understood
how these parameters can be determined from a known network structure and node dynamics.

In this article, we introduce a new type of dynamical equations based on competition and
cooperation between interacting subnetworks of spiking neurons. The idea behind the model
comes from a well-known mathematical equation for population dynamics in ecosystems
where preys and predators interact, typically one feeding on the other. The basic type of such
predator-prey models were suggested by Lotka [42, 43] and Volterra [44] and therefore are
known as (generalized) Lotka-Volterra equations. It was shown that they are powerful enough
to represent nonlinear polynomial equations and the issue of recasting a general nonlinear sys-
tem into generalized Lotka-Volterra equations were discussed [45]. In this paper, we aim at
modeling the interaction between subnetworks using this mathematical framework, by deriv-
ing the equations from the solution of the stationary first-passage time problem for leaky inte-
grate-and-fire neurons. Then, a first order temporal perturbation of the system will result in
the desired dynamics. Lotka-Volterra equations are generally capable of producing limit cycle
and chaotic solutions, as well as switching dynamics. They seem to be rich enough to approxi-
mate also neural population dynamics. They have been suggested as dynamical equations of
single neurons [46] and were already shown to be able to represent winner take all dynamics.
However, to the best of our knowledge, these equations as a collective dynamics of spiking neu-
ral networks have not been justified analytically.

Lotka-Volterra equations have previously been suggested as a mechanism to generate meta-
stable systems with saddle nodes [47, 48] that can exhibit winnerless competition dynamics.
This framework allows robust transient dynamics [49] that was hypothesized to underly sen-
sory encoding in the olfactory system [50–52]. In the case studies considered here, which are
composed of three interacting populations in a symmetric network, the Lotka-Volterra equa-
tions in a two-dimensional reduction show two stable fixed points. Therefore, the dynamics
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support attractor models. Analysis in higher dimensions and with more interacting popula-
tions, however, can result in more complicated nonlinear dynamics.

Attractor models are simple and intuitive models that can account for the switching dynam-
ics between populations [10, 18, 19, 53]. It has been recently shown that they are capable of rep-
resenting neural variability that is also found in electrophysiological recordings during evoked
and spontaneous states [8]. However, the deterministic dynamics of such models per se cannot
represent “spontaneous” transitions between states. Therefore, it is essential to assume the exis-
tence of an additional stochastic component. This random noise can either come from an
external source or it may derive from the intrinsic fluctuations inside the network, typically
modeled as a self-generated noise of the system. This intrinsic noise can, for example, be due to
finite size effects, and it has indeed been shown that rescaling the size of the neuronal popula-
tions in spiking networks can affect the switching dynamics [19, 54].

In this article, we consider two different cases of three interacting populations of spiking
networks. First, we look at a network with two excitatory subnetworks with a shared inhibitory
subnetwork (EEI network). Then, we consider a network with two interacting inhibitory sub-
networks that interact with a common excitatory subnetwork (EII network). We are most
interested in the regime where switching dynamics between the activities of the competing
populations emerges. In the Methods section, we derive Lotka-Volterra equations from a first-
order temporal perturbation of the stationary solution of the leaky-integrate and fire model
using a standard mean-field approach. We employ numerical simulations of a spiking network
and compare its behavior to our theory. In the Results section we demonstrate that the variable
corresponding to the single subnetwork can be expressed in terms of the dynamics of the other
two competing subnetworks. The resulting two-dimensional system has two attractors which
are separated by a saddle node. In both case studies, in fact, the nullclines of the analytical
equations match with those extracted from the time series of network simulations. Moreover, it
turns out that the life time distributions of single population activity states are all approxi-
mately exponential. This provides evidence for a prominent role of random fluctuations
(“noise”) in perturbing the trajectories. We will also show that the inherent noise of the system
is multiplicative, as was demonstrated before [55], and that the whole system is in a balanced
state with a high correlation between inhibitory and excitatory population firing rates.

Materials and Methods
We aim at characterizing the dynamics of competition between interacting excitatory and
inhibitory neuronal subnetworks. Two different scenarios of three interacting subnetworks will
be studied analytically and the results will be verified by numerical simulations. We will show
that generalized Lotka-Volterra equations with a constant term could be inferred using stan-
dard statistical methods. These equations provide a good description for the slow dynamics
(order 100 Hz in the frequency domain) of the collective firing rates of subnetworks.

Network structure and parameters
The network consists of 4 000 excitatory neurons and 1 000 inhibitory neurons. We used
leaky-integrate-and-fire neuron models with a time constant of τ = 20 ms. A reset potential of
10 mV and a threshold value of θ = 20 mV was chosen for each neuron. The dynamics of the
membrane potential vi(t) of neuron i in the network obeys

t _viðtÞ ¼ �viðtÞ þ t
XN
j¼1

JijSjðt � tdÞ ð1Þ
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where Sj is the spike train of neuron j, which projects to the post-synaptic neuron i with a delay
of td. Throughout the paper, td = dt = 0.1 ms, where dt is the time resolution for network simu-
lation. Each neuron receives an external DC current of 270 pA. We decided to apply a DC cur-
rent instead of a stationary Poissonian spike train as an external input to each neuron because,
for our study, any external source of randomness, which could impose the observed symmetry
breaking, was to be avoided. However, formally, in the dynamics of the membrane potential,
we use the equivalent Poisson rate for this external input. We consider two different scenarios
in which two populations with neurons of the same type (excitatory or inhibitory) are compet-
ing with each other, and the third population comprised of neurons of the different identity is
coupled symmetrically to the competing populations. The schematic of the network is shown
in Fig 1, where subnetworks B1 and B2 have the same type of neurons and subnetwork A con-
sists of neurons of the opposite type. Throughout the paper we consider networks of fixed in-
degree and fixed out-degree to avoid heterogeneities in number of connections and emergence
of hubs in the network. To this end, we used a variant of a configuration model [56, 57] to
derive the connectivity matrix between neurons in the entire network. For a network of three
subnetworks, 9 blocks of fixed column sum and fixed row sum were generated for the adja-
cency matrix of connectivity. We did not allow any self-connections or multiple connections
between neurons. All subsequent network simulations were conducted with NEST [58].

The EEI scenario. There are two subnetworks of 2 000 excitatory neurons each, with iden-
tical parameters. Each excitatory subnetwork receives local recurrent input from its own pre-
synaptic population which comprises 10% of the whole respective population. The number of
outgoing connections from each neuron to each excitatory population is also set to contact
10% of all neurons in the corresponding population. EPSP amplitude for inputs from neurons
residing in the competing excitatory population is J = 0.1 mV. For inputs from within each
population, we impose a larger amplitude wJ = 0.1wmV, where w is a factor between 1.0 and
3.0. This way, each excitatory subnetwork is distinct from the other one only by stronger inter-
nal connections between neurons.

Fig 1. Subnetworks and connections between them to form the full network. The subnetworks are
comprised of either excitatory or inhibitory neurons. Subnetworks B1 and B2 consist of neurons of the same
type, either excitatory (the EEI scenario) or inhibitory (the EII scenario). The subnetwork A has neurons of the
opposite identity. For excitatory (inhibitory) B1 and B2, we arrangew� 1 (w� 1).

doi:10.1371/journal.pone.0138947.g001

Competition between Networks in the Balanced State

PLOS ONE | DOI:10.1371/journal.pone.0138947 September 25, 2015 5 / 28



In addition to the two types of excitatory inputs, each excitatory neuron receives input from
300 randomly selected inhibitory neurons from an inhibitory subnetwork of total size 1000
neurons. The IPSP amplitude is g = 6 times larger than the EPSP amplitude. Each neuron in
the inhibitory population receives input from 30% of each excitatory population. The EPSP
amplitudes are equal to J = 0.1 mV, identical with the other connections between excitatory
populations. The local inhibitory connections inside the inhibitory subnetwork are established
with a fraction of 30% of the whole population [59].

The EII scenario. In the second scenario we study in this paper, the network has two
inhibitory populations of size 500 neurons each, that are competing. There are 4 000 excitatory
neurons in one homogeneous population, each of which projects to 150 randomly selected
inhibitory neurons in each of the inhibitory populations. The probability of connection
between two randomly chosen neurons from the inhibitory population is 30%. Each inhibitory
neuron also projects to 30% of all excitatory neuron. The IPSP to EPSP ratio is g = 6 and the
EPSP amplitude is J = 0.1 mV. Neurons within each inhibitory population have IPSP amplitude
equal to wgJ, where w is a factor between 0.0 and 1.0. As a consequence, inhibitory neurons
within each subnetwork are less strongly coupled to each other, unlike the scenario described
above, where w was a factor greater than or equal to 1.0.

Dimensionality reduction and inter-population couplings. To reduce the dimensional-
ity of the described model, we considered the population spike train of each subnetwork as a
signal that represents the activity of the population. The population spike trains of the three
sub-networks were sampled in time bins of size 10 ms (too large time bins distort the temporal
dynamics and, too small bins distort the statistics of the population signals), yielding estimates
of the time dependent firing rates of each population. In other words, we used a time depen-
dent histogram of the spike counts of the population activities (to which we refer as “popula-
tion histogram” in the rest of the manuscript). To visualize the slow changes in the dynamics of
the rates, we smoothed the time series using a Savitzky-Golay filter [60], which are derived
from polynomial regression, with n = 10 andm = 4, where 2n + 1 andm are the length of the
filter in discrete time and the order of the polynomial used for regression, respectively. The
main advantage of this filter is that it does not distort the relative maxima and minima of the
signal.

To specify the contribution of each subnetwork to the neural dynamics, for individual neu-
rons in each population, Eq (1) can be re-written in the following form

t _v1ðtÞ ¼ �v1ðtÞ þ m1ðtÞ þ
ffiffiffi
t

p
s1ðtÞx1ðtÞ

t _v2ðtÞ ¼ �v2ðtÞ þ m2ðtÞ þ
ffiffiffi
t

p
s2ðtÞx2ðtÞ

t _v3ðtÞ ¼ �v3ðtÞ þ m3ðtÞ þ
ffiffiffi
t

p
s3ðtÞx3ðtÞ

where in the EEI scenario, indexes 1 and 2 refer to the two competing excitatory populations
and index 3 refers to the inhibitory population. In the above equations, μk and σk, k 2 {1,2,3}
represent the first and second moments of the input to each neuron in its corresponding popu-
lation. ξi is a stochastic variable that represents the fluctuations of the input and it has the prop-
erties of a white noise with zero autocorrelation for non-zero lags. It is straightforward to verify
that the input statistics can be inferred from the following equations [61]

m1ðtÞ ¼ tðNE�wJr1ðtÞ þ NE�Jr2ðtÞ � NIp�gJr3ðtÞ þ Jr0ðtÞÞ
m2ðtÞ ¼ tðNE�Jr1ðtÞ þ NE�wJr2ðtÞ � NIp�gJr3ðtÞ þ Jr0ðtÞÞ
m3ðtÞ ¼ tðNEp�Jr1ðtÞ þ NEp�Jr2ðtÞ � NIp�gJr3ðtÞ þ Jr0ðtÞÞ

ð2Þ
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and

s2
1ðtÞ ¼ tJðNE�w

2Jr1ðtÞ þ NE�Jr2ðtÞ þ NIp�g
2Jr3ðtÞÞ

s2
2ðtÞ ¼ tJðNE�Jr1ðtÞ þ NE�w

2Jr2ðtÞ þ NIp�g
2Jr3ðtÞÞ

s2
3ðtÞ ¼ tJðNEp�Jr1ðtÞ þ NEp�Jr2ðtÞ þ NIp�g

2Jr3ðtÞÞ

where r0(t) is the equivalent external rate for the external DC current input for each neuron.
(Note that we did not apply an external Poisson spike train to avoid a possible impact of the
external noise on the switching dynamics. Also, note that r0 does not enter the equations for
σk.) NE and NI are the sizes of the excitatory and inhibitory populations, and p is a factor that
will be multiplied by � to indicate a higher probability of connections when it is needed.
Throughout the paper, this parameter is fixed and equal to 3. Considering the fact that we are
studying slow dynamics of the network, it is viable to assume the firing rate of each population

as the sum of the firing rates of its components. It implies that ri ¼ Ri
Ni
, where Ri, i 2 {1,2,3} is

the population rate variable. From the above equations it is easy to verify that in Eq (2), the
matrix that links the firing rates (R1, R2, R3) to the mean membrane potentials of the neurons
in the corresponding subnetworks is

WEEI ¼ t�J

w 1 �pg

1 w �pg

p p �pg

0
BBB@

1
CCCA ð3Þ

Similarly, a coupling matrix could be derived for the EII network, in which R1 and R2 are popu-
lation firing rates of the two competing inhibitory populations and R3 is the firing rate of the
excitatory population. This matrix is of the following form

WIIE ¼ t�J

�pwg �pg p

�pg �pwg p

�pg �pg 1

0
BBB@

1
CCCA ð4Þ

In the next section, we will use these matrices in the competition-based equations for the
mean-field dynamics of the network.

Competition model of activity
A well-studied model of competition between different animal species (e.g. predators and
preys) in an ecosystem is a set of coupled differential equations known as Lotka-Volterra equa-
tions [42–44]. It is known that nonlinear ODEs could have a “canonical” form resembling
Lotka-Volterra equations [45]. Inspired by the rich dynamics of such systems in modeling
competitive behavior, and the fact that competition is also a frequent behavioral pattern in neu-
ronal systems, we hypothesize a variant of Generalized Lotka-Volterra equations that can cap-
ture the network dynamics. In order to justify the Lotka-Volterra (LV) equations as a model
for the dynamics of neural populations, we consider a first-order perturbation of the (approxi-
mate) firing rate of a single neuron in the low firing rate regime [61]. The low-frequency
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dynamics of the firing rate of neuron i in any given population is

i _riðtÞ ¼ �ri þ
y� m
st

ffiffiffi
p

p exp �ðy� mÞ2
s2

� �
ð5Þ

where m ¼P3
i¼0

kiri and s
2 ¼P3

i¼0

j Jiki j ri are the mean and the variance of the input to each

neuron. Note that r0 enters μ, but it does not appear in σ2. ι is the time constant of firing rate
dynamics. In these equations ki is the corresponding coefficient of each ri in Eq (2) and could
be easily inferred form Eq (3) or Eq (4). Ji is a positive number reflecting the PSP amplitude of
the presynaptic neuron i. In other words, in the EEI network, for example, J1 and J2 are either
equal to J or wJ, depending on whether they reflect the PSP of neurons within or between popu-
lation. J3 is equal to −gJ as it belongs to the inhibitory population.

We suggest an approximation for Eq (5) and we write the right-hand side in the form of a
polynomial so that the analysis becomes simpler. We expect Eq (5) to be a function of rate (rj)
of any presynaptic population. To see the dependence, we take the derivative of Eq (5) with
respect to any rj. For that purpose, we use the chain rule for derivatives and we consider
@ _r i
@rj

¼ @ _r i
@m

@m
@rj
þ @ _r i

@s
@s
@rj
. Doing so, we will end up with

i
@ _ri
@rj

¼ �skj
ffiffiffi
p

p � ðy� mÞ ffiffiffi
p

p jJjkjj=ð2sÞ
s2

ffiffiffi
p

p exp �ðy� mÞ2
s2

� �

�2
y� m
s

y� m

s
ffiffiðp pÞ

�kjs� ðy� mÞjJjkjj=ð2sÞ
s2

exp �ðy� mÞ2
s2

� � ð6Þ

On the right hand side of the above equation, there are two terms that share a common factor
y�m
st
ffiffi
p

p expð� ðy�mÞ2
s2 Þ. From Eq (5), we know that this term is equal to the stationary rate ri. There-

fore, we replace the common terms and get the following simpler equation

i
@ _ri
@rj

¼ ri
�jJjkjj
2s2

þ 2ðy� mÞ
s2

ðkj þ ðy� mÞjJjkjj=ð2s2ÞÞ � kj
y� m

� �
ð7Þ

Eq (7) indicates that the coupling from any presynaptic population to a given neuron in popu-
lation i can be approximated in the following form

@ _ri
@rj

¼ rikj c1 þ poly
X
k

rk

 ! !
þ c2 ð8Þ

where poly(.) indicates a polynomial function of rk up to higher orders which could be obtained
by Taylor approximation. Note that Eq (8) gives an expression for the relative change of the
rate dynamics _r i with respect to rj. To get an equation for _r i, one needs to use a multivariate
Taylor approximation to be able to recover _r i from rjs, for j 2 {0,1,2,3}. After some simplifica-
tions, the general form of neural rate dynamics for any population i, is

dri
dt

¼ ri
X

j

kjðrj þ CjÞ c1 þ poly
X
k

rk

 ! ! !
þ C2

¼ ri
X

j

kjrj þm1 þ poly
X
k

rk

 ! !
þm2

ð9Þ

where Cj is the operating point of rj and C2 = c2(∑j Cj) is obtained from the expansion.m1 =
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C1(∑j Cj kj) andm2 = C2 are constant terms (Also, note that the coefficients of rk inside poly(.)
are different now).

So far, we considered the dynamics of individual neurons in each population. However,
note that ri can be replaced by Ri/Ni, as outlined before. Therefore, Eq (9), with rescaled param-
eters according to corresponding population sizes, holds for the population dynamics as well.
Eq (9) is of Lotka-Volterra type with an additional constantm2. Essentially, it describes the
first temporal derivative of the rate variable _r in the form of the rate variable rmultiplied by a
polynomial function of all other rate variables in each population. Given the connectivity
matrix that relates the input to the population rates, shown in Eqs (3) and (4), we write the
dynamics of competition in the following form

_X 1ðtÞ ¼ kX1ðtÞðwX1ðtÞ þ X2ðtÞ þ k1YðtÞ þ k0 þ polyðX1ðtÞ;X2ðtÞ;YðtÞÞÞ þ h0

_X 2ðtÞ ¼ kX2ðtÞðX1ðtÞ þ wX2ðtÞ þ k1YðtÞ þ k0 þ polyðX1ðtÞ;X2ðtÞ;YðtÞÞÞ þ h0

_Y ðtÞ ¼ k0YðtÞðX1ðtÞ þ X2ðtÞ þ k2YðtÞ þ k0 þ polyðX1ðtÞ;X2ðtÞ;YðtÞÞÞ þ h0

ð10Þ

8>>><
>>>:

where X1(t) and X2(t) are the firing rates of the two competing subnetworks, and Y(t) is the fir-

ing rate of the subnetwork with neurons of the different type. k, k0, k0, k1, k2 and h0 are constant
parameters (Note that k0 =m1 and h0 =m2 in Eq (9)). In the case where the two competing
subnetworks are comprised of excitatory neurons, we have k1 = −pg. k is a factor influenced by
the size of the network, the PSP amplitude, the time constant of the membrane potential, and
the number of connections between excitatory neurons. This parameter is positive for the EEI
network, and it will take a negative sign for the EII network. In the latter case, the sign of k0
and k1 flips (compare elements ofWEEI andWIIE in Eqs (3) and (4), respectively). k0 results
from effective couplings between subnetworks and the constant current input. h0 is a constant
used to make sure that, when any of X1,2(t) is equal to zero, the external drive to the network
kicks the system out of the fixed point and the activity of the network does not die out. This is
moreover justified by the constant external drive to the network.

We hypothesize that on the population level, as far as the slow dynamics are considered, the
expression poly(X1(t), X2(t), Y(t)) in the dynamics of X1 and X2 in Eq (10) can be neglected
and the other terms, which are linear combinations of population firing rates (meaning wX1(t)
+ X2(t) + k1 Y(t) and X1(t) + wX2(t) + k1 Y(t)), can be replaced by μi in Eq (2) to get a qualita-
tive behavior of the system. In other words, we examine the mean-field coupling weights
between subnetworks as the coupling coefficients in the LV equation. This assumption simpli-
fies the equations and it will be shown in the Results section that it does not distort the qualita-
tive dynamics of the spiking network. As it turns out, however, due to small variability of the
population with different neural type, poly(.) in Eq (9) cannot be neglected for the dynamics of
_Y (see the Results section). We will demonstrate later that plugging relevant parts of the cou-
pling matricesWEEI andWIIE shown in Eqs (3) and (4) into Eq (10) indeed leads to a dynam-
ical system that, on a population level, qualitatively behaves the same as the simulated large-
scale network.

We define two new variables which are related to the activities of the competing subnet-
works, X1(t) and X2(t).

X1ðtÞ þ X2ðtÞ ¼ 2CðtÞ
X1ðtÞ � X2ðtÞ ¼ 2DðtÞ ð11Þ

where C(t) is the average firing rate of the two competing subnetworks and D(t) is half the dif-
ference between the two rates. With these new variables, we can rewrite Eq (10) by replacing
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X1(t) = C(t) + D(t) and X2(t) = C(t) − D(t)

_CðtÞ ¼ CðtÞðk0 þ kððwþ 1ÞCðtÞ þ k1YðtÞÞÞ þ kðw� 1ÞDðtÞ þ h0

_DðtÞ ¼ DðtÞðk0 þ kð2wCðtÞ þ k1YðtÞÞÞ
ð12Þ

8<
:

It will be shown later in the Results section that Y(t) is well approximated by a polynomial
function of C(t) and D(t). More specifically, data analysis of network simulations suggests the
following relationship between Y(t) and the new variables C(t) and D(t)

YðtÞ ¼ aþ bCðtÞ þ f D2ðtÞ ð13Þ
As it is obvious from Eq (12), D(t) = 0 is a fixed point of the system. However, its stability
depends on the parameters of the system. This means that the zero difference between the fir-
ing rates of the competing subnetworks (equal activity) is always a solution, however, it might
be situated like a mountain pass (saddle node) between other stable solutions (valleys) of D(t),
which will manifest itself in the observed switching dynamics of the population rates.

Lyapunov function
In the previous section, we suggested a dynamical system that had two stable nodes which were
separated by a saddle point. Such a system will relax to one of the stable nodes, when the exter-
nal input is constant. These fixed points reflect the macroscopic dynamics of the network on
the large scale. However, due to the finite number of neurons in the network and synaptic
interactions between them, the stationary solution of the system is accompanied by marked
fluctuations around the fixed point, which is the manifestation of microscopic dynamics in a
high-dimensional system. This so-called “self-generated noise” or “intrinsic noise in the sys-
tem” kicks the trajectory away from one fixed point and, passing by the saddle point, the trajec-
tory will be lead to the other stable fixed point. This transition causes the switch from high to
low activity (or vice versa) of a population. To gain a qualitative understanding how the average
life time of the active state depends on the bifurcation parameter w, one way is to find the
energy function of the system and check how the difference between the energy of the different
equilibrium points changes with the parameter. Assuming additive noise with a constant inten-
sity in the dynamics, the bigger this difference is, the less probable the occurrence of a state
switching. As it will be demonstrated in the Results section, the influences of h0 in Eq (10) and
f in Eq (13) on the dynamics of Eq (10) are extremely weak. Therefore, for mathematical sim-
plicity, we neglect them in order to get a Lotka-Volterra set of equations in their generalized
form.

We use a Lyapunov function as a specific implementation of such an energy function. It
should be emphasized, though, that the Lyapunov function is not unique, and the interpreta-
tion as an “energy” function of the system should be taken as a metaphor, rather than as a rig-
orous physical statement. The system Eq (10) in two dimensions is not integrable and a strict-
sense energy function does not exist. A Lyapunov function for n-dimensional competitive
Lotka-Volterra equations has been suggested in [62]. Here, we use the same approach to obtain
an estimate of an energy-like quantity in the (X1, X2) state space. According to [62], for the fol-
lowing general form of Lotka-Volterra equations

dXi

dt
¼ piðXiÞ qiðXiÞ �

Xn
k¼1

cikdkðXkÞ
 !

ð14Þ
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one possible Lyapunov function is

VðXÞ ¼ �
Xn
i¼1

Z Xi

0

qiðziÞd0
iðziÞdzi þ

1

2

Xn
j;k¼1

cjkdjðXjÞdkðXkÞ ð15Þ

The simplified 2D equations for the dynamics of interaction between the two excitatory popu-
lations in the EEI case (wherein Y(t) is replaced by (see Eq (13)) a + bC(t) + fD2(t), f� 0) are
the following

_X 1ðtÞ ¼ kX1ðtÞ wX1ðtÞ þ X2ðtÞ � pg aþ b
2
ðX1 þ X2Þ

� �þ k0
� �

_X 2ðtÞ ¼ kX2ðtÞ X1ðtÞ þ wX2ðtÞ � pg aþ b
2
ðX1 þ X2Þ

� �þ k0
� � ð16Þ

8<
:

with a nontrivial fixed point at pga�k0
wþ1�pbg

ð1; 1Þ and two stable fixed points at ð0; pga�k0
w�0:5pgb

Þ and
ð pga�k0
1�0:5pgb

; 0Þ on the X1 and X2 axis. It leads to the following Lyapunov equation

VðX1;X2Þ ¼ �ðk0 � pgaÞðX1 þ X2Þ þ
pbg
2

� w

� �
x21 þ

pbg
2

� w

� �
X2

2 þ X1X2

pbg
2

� 1

� �
ð17Þ

with a derivative function which obeys

_V ðX1;X2Þ ¼ �kX1 wX1ðtÞ þ X2ðtÞ � pg aþ b
2
ðX1 þ X2Þ

� �
þ k0

� �2

�kX2 X1ðtÞ þ wX2ðtÞ � pg aþ b
2
ðX1 þ X2Þ

� �
þ k0

� �2
ð18Þ

and therefore, is negative semidefinite.

Results
In this section, we present simulation results for the two case studies and compare them with
the model based on Lotka-Volterra equations, as described in the Methods section. When we
consider a typical system in the switching regime, the parameters for the scenario with two
excitatory one inhibitory population (EEI) are J = 0.1 mV and w = 2.5 and the parameters for
the scenario with one excitatory and two-inhibitory populations are J = 0.1 mV and w = 0.7.
All networks under study are operated in the fluctuation driven regime, and the free mean
membrane potential of neurons typically remains below threshold.

Two-excitatory one-inhibitory network (EEI scenario)
In this case, two excitatory populations are competing with each other, and they are counter-
balanced by one inhibitory population. As it will be shown later, for certain parameters of the
system, switching dynamics between the two excitatory populations will occur. In this section,
the nonlinearities governing the dynamics of the system, which are inferred from simulation
results, as well as predictions from the corresponding Lotka-Volterra model will be demon-
strated. In the case of switching behavior of the system, the life time distribution of the active
states as a function of the bifurcation parameter w, as well as a Lyapunov function (energy
landscape) of the deterministic dynamics will be described.

Switching dynamics as a collective emergent property. In our simulation studies, we
considered the effects of J, the amplitude of excitatory to inhibitory postsynaptic potentials
(PSP), and w, the ratio between the excitatory PSP amplitude within each population and the
excitatory to inhibitory PSP amplitude, on the network dynamics. As shown in Fig 2, for
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intermediate values of w the network undergoes a switching dynamics between the two excit-
atory populations. As none of the two excitatory subnetworks really wins the competition, we
call this a winner-less competition (WLC) state. For values of w below 2 the firing rates of the
two excitatory populations are non-zero and identical, and in Fig 2 it is labeled as “equal rate”
(ER). For values larger than 3, depending on the initial conditions of the two populations, one
of the excitatory subnetworks stays at a relatively higher activity and the other one has a very
low activity. We call this a winner-take-all (WTA) state, as the dominating population keeps its
activity up for the entire range of simulation time. The global state of the network depends
mostly on w, and to the degree to which this can be observed, J does not seem to affect the

Fig 2. In the J −w parameter space, three different types of dynamical behavior is observed for the EEI scenario. (1) Equal rate (ER) for small values
ofw, in which the two excitatory subnetworks have identical non-zero firing rates. (2) For intermediate values ofw, the two identical populations keep
switching the activity between themselves, and none of themmaintains the high activity, so called “winner-less competition” (WLC). (3) Large values ofw
result in winner-take-all (WTA) dynamics in which, depending on the initial conditions, one of the two competing populations maintains the high activity.

doi:10.1371/journal.pone.0138947.g002
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dynamics. Therefore, in our study, we consider w as an essential parameter that plays role in
the collective behavior of the network (bifurcation parameter).

To demonstrate the switching dynamics between the excitatory subnetworks, we chose
J = 0.1 mV and w = 2.5 as the parameters of the network. The population histogram of the
three population activities estimated from spike counts in time bins of 10 ms are shown in light
colors in Fig 3. The low-pass filtered rates are displayed in darker colors. It is obvious from
these data that the excitatory population rates are more variable than the inhibitory population
rate. The switch takes place almost instantaneously, and the two excitatory populations never
fire simultaneously at high rate.

Correlations and firing rate distributions. As far as the mean membrane potentials of
individual neurons are below threshold and pairwise correlations are negligible, the overall net-
work is in the balanced state. The balance is maintained during switching; therefore, the com-
bined activity of the two excitatory populations is highly correlated with the activity of the
inhibitory population (Fig 4A). For intermediate values of w, when switching dynamics
emerges, the two excitatory populations are negatively correlated (Fig 4B). From the two-
dimensional distributions of the activity of the excitatory populations it is clear that the activity
of each excitatory population has a bimodal distribution.

Some studies on bistability of spiking networks with different neuronal dynamics rely on a
bistable dynamics of individual neurons [63]. However, LIF neurons are not bistable elements,
and for any fixed input statistics, there is a unique solution of the first-passage time problem

Fig 3. Switching dynamics of the two excitatory subnetworks for J = 0.1 mV andw = 2.5. The population histograms of the three subnetworks with time
intervals of 10 ms are plotted in light colors. A Savitzky-Golay filter with length 2n + 1 = 21, dt = 10 ms and polynomial orderm = 4 was used to smoothen the
signals, which are plotted in darker colors. The activity of the inhibitory subnetwork has less fluctuations compared to the activity of the excitatory
subnetworks.

doi:10.1371/journal.pone.0138947.g003

Competition between Networks in the Balanced State

PLOS ONE | DOI:10.1371/journal.pone.0138947 September 25, 2015 13 / 28



[64, 65]. Therefore, the switching dynamics is not induced by single neuron dynamics, but it is
a system property that emerges only in large-scale networks.

Nonlinear dynamics of interactions. Simulation results show that the inhibitory rate is a
function of the sum, C, and the difference, D, of the rates of the two excitatory populations
(Fig 5). To make the relationship visible, we used a Savitzky-Golay filter (with parameters
described in the Method section) to reduce the noise. Inhibitory firing rate scales linearly with
C and quadratically with D. The linear relationship with C is clear from the equal distances
between the black contour lines (model fit) in Fig 5A. Quadratic relationship with D is illus-
trated in Fig 5B for a constant value of C. Eqs (9), (10) and (13) imply that in general the rate
dynamics can be approximated as polynomial functions of the firing rates of the involved sub-
networks. Our simulation results show that for the inhibitory firing rate, the second-order
terms of the excitatory rates play role in the dynamics, however, we can neglect them in the
dynamics of the excitatory firing rates (see Eq (10)). For the specific values of J and w in this
case study, we estimate a = 1.112 kHz, b = 0.356 and f = 0.014 ms in Eq (13), respectively, using
general purpose least-square optimization available in the SciPy library [66]. A chi-square test
for the goodness-of-fit results in a p-value of 10−6.

A population histogram with bin size of 10 ms was extracted for each of the three involved
subnetworks. Using normalized first-order differences, we estimated the corresponding deriva-
tives of all three signals. The fluctuations of the inhibitory population are negligible compared
to the activities of the two excitatory populations. Moreover, we know the relationship between
the omitted variable and the firing rates of the two excitatory populations, as demonstrated in
Fig 5 (see also Eq (13)). Therefore, the projection to these two dimensions gives a good picture
of the three-dimensional dynamics. In the two-dimensional reduced state space of the firing
rates of the competing subnetworks, using the method used in [55], we estimated the determin-
istic flow of the two excitatory populations (Fig 6A). The nullclines of the system were obtained
from the simulated time series by finding the zero-level contours of the derivatives in the two-

Fig 4. Joint distributions of population activities. A. Interactions between total excitation and inhibition. The elliptical shape of the distribution indicates a
strong positive correlation between excitation and inhibition. B. Negative interactions between the two excitatory populations. As activity is almost mutually
exclusive, the term switching seems adequate. The unit of the numbers on the color bars are ms2.

doi:10.1371/journal.pone.0138947.g004
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dimensional state space. The corresponding flow of the network dynamics extracted form the
time series in the transformed (C, D) state space is depicted in Fig 6B. The quadratic nature of
the nullclines indicates that in Eq (10), second order polynomials are needed to represent the
dynamics of the system properly.

The flows of the systems Eqs (10) and (12) are illustrated in Fig 6C, 6D, respectively. Using
the parameters obtained from the mean-field analysis (section “Dimensionality reduction and
inter-population couplings”), k0 = 22.0 kHz, h0 = 0.5 kHz, k = 1 ms, and k1 = −pg, the qualita-
tive behavior of the model is very similar to the dynamics inferred from the network simulation
(Fig 6A, 6B). In both cases, in the partial state space spanned by the firing rates of the two excit-
atory populations, two attractors are separated by a saddle node. In the (C, D) state space,
D = 0 is one branch of the nullcline of the dynamics of the difference, but it does not form any
stable fixed point of the system dynamics. However, two symmetric intersection points of the
C and D nullclines define two stable critical points of the system. Due to the symmetry of the
system, the difference is a constant number but it has a different sign in each case. Different
signs of D correspond to different temporary winners.

Special case of w = 1. In the special case of w = 1, there is no distinction between within
and across connections of the excitatory populations and only one homogeneous excitatory
subnetwork exists. In this case, the parameters of Eq (13) are a = 1.12 kHz, b = 0.27 and f =
−0.01 ms, and the nonzero nullclines of C and D are parallel to each other. The C nullcline
intersects with the D nullcline only in one point where it has to have D = 0 as a solution, as
mentioned before, and C will have a nonzero value (Fig 7). This is the typical scenario in bal-
anced random networks of excitatory and inhibitory populations, and the Lotka-Volterra
model replicates this behavior for the parameters considered here. In this case, there is no dif-
ference between the firing rates of the two excitatory subnetworks and the system remains sta-
tionary (apart from random fluctuations). Also, in the low frequency regime, the inhibitory

Fig 5. Inhibitory firing rate as a linear function ofC and quadratic function ofD. A. Data from numerical simulations of the network are illustrated as
colored points. The color bar shows the firing rate of the inhibitory population in unites of spikes per milliseconds (same unites for C and D). Black contour
lines show the isolines of Eq (13) after parameter estimation. The equal distance between the iso-lines indicates a linear relationship between the inhibitory
firing rate andC. Unites of the numbers on the color bar are kHz. B. Data points for a constant level of C = 0.9 kHz are illustrated in blue dots as a scatter plot
of D and I. Model fit for all available data points after plugging C = 0.9 into Eq (13), shows the quadratic dependence of I on D (red curve).

doi:10.1371/journal.pone.0138947.g005
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firing rate scales linearly with the excitatory activity (f is very small). This behavior has been
demonstrated before in many studies [67–69]. For this particular value of w, only one fixed-
point exists and shows that w is indeed a bifurcation parameter, as it changes the qualitative
behavior of the system.

How do the fixed points depend on w?. Network simulations suggest that the bigger w is,
the bigger the difference between the firing rates of the two competing populations is (Fig 8A).
This means that if the neurons within each subnetwork interact with stronger synapses, the dif-
ference between the collective rates of the two competing populations becomes more pro-
nounced. This shows that cooperation within populations makes a higher contrast between the
two activity levels. In network simulations, the difference between the activity of the

Fig 6. Flow of the two excitatory subnetworks in two dimensions, extracted from simulated time series (top) and inferred from the Lotka-Volterra
model (bottom). A. State space of excitatory-excitatory firing rates extracted from simulations.B. Sum-difference state space extracted from simulations. C.
State space of excitatory-excitatory firing rates are inferred from the model. D. Flow of the system in Sum-difference state space inferred from the model.

doi:10.1371/journal.pone.0138947.g006
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populations becomes obvious only for values above w = 2. For 1< w< 2, there is no clear sepa-
ration between the firing rates of the two excitatory populations. In fact, considering the size of
the network, “within” and “between” population weights are not distinct enough to manifest
their effect on the collective dynamics in the network simulations. The Lotka Volterra model
Eq (10) exhibits distinct stable fixed points for the entire range of positive w> 1 in our study.
In Eq (10), the two excitatory populations are actually cooperating because they both have a
positive influence on the growth rate of the other population’s activity. However, the farther
apart the positive coefficients corresponding to each population activity are, the farther apart
the two fixed points become.

Distribution of life times. As mentioned before, spontaneous switching in an attractor
network does not take place unless there is some source of noise in the system. Here, we first
show that the statistics of the switching times suggest that they are completely random. Then,
we study the qualitative influence of parameter w on the life time statistics. This helps us to bet-
ter understand the network behavior, represented in Fig 2. Moreover, we show that the noise
dynamics is not additive, but strongly state dependent.

The survival distribution of the life times of the active state (times between two consecutive
switches) could be very well approximated by an exponential function. This is illustrated in Fig
8B by fitting a straight line to the logarithm of the survivor (log-survivor) function of the dwell
times that were inferred from network simulations (The survivor function for a random life
time is a function that gives the probability that the stochastic system will survive beyond the
time specified). This implies an exponential dwell time distribution. This provides a strong
hint that the switches take place randomly (i.e. following Poisson statistics), and that the intrin-
sic noise (fluctuations due to the complex microscopic dynamics) in the network plays an
important role for the statistics of the dwell times.

As a function of w, the average time between switches grows faster than exponential (Fig
8C). To illustrate the relationship between average life times and the coupling parameter w, we
used the Lyapunov function of the system Eq (10) with h0 = 0 and f = 0 in Eq (13), as explained

Fig 7. Flow of the system Eq (12) forw = 1.Only one fixed point at D = 0 exists, and the sum of the activities
of the excitatory populations is nonzero. The equilibrium is unique, therefore stationary activity without any
switching results.

doi:10.1371/journal.pone.0138947.g007
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in the Methods section. The system was reduced to a two dimensional model by replacing Y,
the inhibitory rate, in Eq (10) with the expression in Eq (13). Then, we calculated the energy
difference between the attractor point and the saddle point. Intuitively, the bigger this differ-
ence, the more difficult it is for fluctuating forces to drive the system out of the attractor valley
“uphill” towards the saddle. This difference as a function of w is plotted in Fig 8D and supports
the idea of average life times growing with w. As a consequence, a winner-take-all behavior of
the network emerges if w is large enough (Fig 2). In this regime, the energy difference between
the stable node and the saddle point is large and the fluctuations of the population activity are
not sufficient to enter the basin of attraction of the other stable fixed point.

Fig 8. Life time statistics of the winning (high rate) population. A. Difference between the rates at the stable fixed point as a function of the parameterw
that describes the relative strength of synapses within each population. B. Survivor function of the distribution of life times for the two competing excitatory
populations. C. Average life time as a function ofw for network simulations. D. Difference of energy levels (see text for details) between the attractor and the
saddle point of Eq (10), when the inhibitory population firing rate is replaced by the other two dynamical variables, as a function ofw.

doi:10.1371/journal.pone.0138947.g008
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As it is obvious, the attractor model suggested by deterministic Lotka-Volterra equations
cannot represent switching dynamics but the existence of some intrinsic noise or random
external perturbation is required. We stress that in the case considered here, the noise does not
come from external sources. It reflects the high dimensional complex dynamics which cannot
otherwise be represented by the low-dimensional description of the three population Lotka-
Volterra model. It has been shown that this type of intrinsic noise arising in balanced random
networks is multiplicative [55], and the fluctuations of the activity are proportional to the rate.
In other words, random excursions into the direction of the active state are more likely to cause
the alternation of the activity. Using the same method that was developed previously [55], we
estimated the variance of the noise in the state space spanned by E1 and E2, which are the low-
pass filtered firing rates of the two excitatory populations (Fig 9). At the moment that a switch
from the high to the low rate takes place, the local variance of the signal increases drastically.
To avoid the influence of switches on the variance in the state space, we did not display the
respective data points around the saddle point of the dynamics (see saddle point in Fig 6A).
The criterion for not showing the data points was based on the absolute difference between the
firing rates of the two excitatory populations being inferior to some value, that was defined as a
threshold. We found that if the data points that belong to a threshold of 0.5 spike/ms and less
are not displayed, switching points will not influence the state space representation of the vari-
ance. In Fig 9A, the variance of the noise for the first excitatory subnetwork, E1, is shown. The
larger the transient rate of E1, the larger the variance of the noise is. If the noise was additive,
the variance in the state space would not change with the state of the firing rates of the popula-
tions and it would be unique for any state. Since the variance is not uniform in the state space,
it is state dependent, and since it increases with the corresponding dynamical variable, it sug-
gests a multiplicative noise model. Fig 9B shows the variance of the noise for E2 and the same
behavior is observed for this variable.

Fig 9. Variance of the noise in the state space of the two competing excitatory subnetworks. A. Variance of _E 1 andB. Variance of _E 2 in the state space
spanned by E1 and E2.

doi:10.1371/journal.pone.0138947.g009
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In summary, the deterministic dynamics of the network, controlled by parameter w, also
affects the stochastic behavior of the collective network dynamics. As our results show, increas-
ing w reduces the chance of hitting the basin of attraction of the other stable fixed point and, as
a consequence, the mean life time increases. This, justifies the idea that the intrinsic self-gener-
ated fluctuations in the network (microscopic dynamics), together with the stable fixed points
(macroscopic dynamics) can explain the observed switching dynamics in the network
simulations.

Two-inhibitory one-excitatory network (EII scenario)
Most results for this type of network are similar to the EEI scenario. For values of w smaller
than 1, the switching dynamics begins to manifest itself. As w decreases more, the mean of the
life times become larger. The reason that the switching dynamics shows up for values of w
between 0 and 1 is that the inhibitory subnetworks inhibits the neurons inside their own popu-
lation less than any other neuron in the competing subnetwork. The exponential distribution
of the life times for any value of w in this interval is still valid and the first moment of the life
time decrease with increasing w (data are not shown). However, there is an interesting change
in the shape of the nullclines of the two dynamical variables, which will be studied in the fol-
lowing section.

Nonlinear dynamics of interactions. The two variables X1 and X2 in Eq (10), are now the
dynamical variables for the two competing inhibitory populations, and Y is the variable for the
firing rate of the excitatory population. Fig 10 illustrates the three dimensional scatter plot of
the reduced system, where the third dimension (the firing rate of the excitatory population) is
color-coded. Similar to Fig 5, the quadratic dependence of the excitatory firing rate on D and
its linear dependence on C is appreciable. However, in this case study, the activity of the

Fig 10. Excitatory population firing rate in theC −D coordinates, inferred from simulation results for a network in the EII scenario. A. Excitatory
firing rates corresponding to different values ofC and D are shown in different colors (see the color bar). Parameter estimation for Eq (13) shows the
estimated values of the excitatory firing rate. The isolines for the model are depicted in black.B. Excitatory firing rate for a constant value of C = 0.64 kHz are
illustrated in blue dots. For this constant, Eq (13) predicts a quadratic scaling of the excitatory rate with the dynamical variable D. The red curve is the model
prediction, with parameters mentioned in the text, for the constant value of C. The dependence of the excitatory firing rate onC and jDj are positive and
negative, respectively.

doi:10.1371/journal.pone.0138947.g010
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excitatory subnetwork decreases with increasing D. The parameters of equation Y can be esti-
mated by least-squares regression method (a = −1.532 kHz, b = 3.217 and f = −0.464 ms with
p-value = 10−6).

Simulation results show that the network with two competing inhibitory subnetworks and a
shared excitatory subnetwork also has two stable fixed points that are linked together via the
repelling manifold of a saddle node in between (Fig 11A). The analogous behavior was
described for the EEI scenario (Fig 11C). The flow in the state space spanned by the two inhibi-
tory populations, inferred from the time series of a network simulation, indicates that the C
nullcline does not depend on D (Fig 11B). This is exactly the same behavior as the one
described by the Lotka-Volterra set of equations (Fig 11D).

Fig 11. Two-dimensional flow characterizing the firing rate dynamics for an EII network. A,C. Excitatory-excitatory firing rate state space.B,D. Sum-
difference state space.

doi:10.1371/journal.pone.0138947.g011
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Discussion
We aimed at analyzing the competition dynamics between excitatory and inhibitory subnet-
works embedded in a network in the balanced state. Such analysis is particularly useful for
understanding the global dynamics of interactions between different brain regions, or between
cortical columns in a small region. Starting with the mean-field approximation derived from a
diffusion approximation [61, 70], using polynomial approximations, we derived a variant of
the well-known generalized Lotka-Volterra equations. These equations are powerful enough to
be considered as canonical models [45]. We studied two different cases where excitatory and
inhibitory populations were interacting. We mainly studied the effect of the within population
connectivity weights. In both cases, switching dynamics was observed both in large scale spik-
ing network simulations and in firing rate equations (attractor dynamics with noise). There
was a close qualitative match between the nullclines of the dynamics reconstructed from net-
work simulations and those corresponding to the rate equations, with the correct type of equi-
librium points. Interestingly, Lotka-Volterra equations with two types of prey and one
predator are known to exhibit switching dynamics for certain parameter configurations [71];
however, in predator-prey dynamics, the influence of the prey population on its own growth
rate is negative (due to limited resources). Therefore, a comparison with models of general
population dynamics has to be done with care.

The proposed rate model assumes one dynamical variable for each population. The two sce-
narios that we studied in this paper, were networks of three interacting populations. In general,
analyzing a three dimensional system using two dynamical variables implies constraints which
may give a distorted picture of the underlying dynamics. However, we observed that the vari-
ability of the population with the opposite identity is smaller compared to that of the compet-
ing populations. The dynamics of the former population could be modeled as a second order
polynomial function of the other two population activities. The same kind of dimensionality
reduction has been applied in similar studies [10, 12]; however, the authors considered the sta-
tionary constant solution of the inhibitory firing rate without any fluctuations. In our first case
study, we observed that inhibitory activity scales positively with the sum and the difference of
the two excitatory populations. In the second case, however, excitatory firing rate scales posi-
tively with the sum and negatively with the difference of the two inhibitory firing rates. Because
the overall system is in a balanced state, it is expected that the third non-paired population
with a different neuron type must be positively correlated with the total activity of the other
two populations [55, 67, 69]. Quadratic dependence, however, is a nonlinear effect and depends
on the identity of the populations. Interestingly, in a similar study of binocular rivalry [19], the
authors derived an energy function to describe the system dynamics to match experimental
results, and they indeed ended up with a quadratic dependency of the inhibitory firing rate on
the excitatory firing rates.

We emphasize that the switching dynamics observed in this study is a collective effect in a
large-scale system, and it is not due to bistability of single neurons. In fact, LIF neurons with
current based synapses have a unique response function for a given input. In other words, a sta-
tionary input, results in a stationary output firing rate. In [63], LIF neurons with conductance
based synapses were the elements of a network with two excitatory and two inhibitory subpop-
ulations. The stationary input-output function of a single neuron was shown to have a bistable
property and as a result the whole network displayed switching dynamics. However, this justifi-
cation does not apply to the networks that we considered in this paper.

We considered random networks with fixed in-degree and fixed out-degree (configuration
model without any multiple or self connections) for the connectivity matrix of the network
within and between populations in order to make sure that there are no hubs in the network
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and the switching dynamics is not induced by heterogeneities in the structure of the network.
A previous study has shown that modifications to network topology (changed motif statistics),
particularly in the inhibitory population, can result in bistable network activity [72]. In the net-
work that we considered, all neurons had exactly the same number of inputs from each of the
populations. Therefore, we can conclude that the switching dynamics is not induced by hetero-
geneities in degree distributions, but it is rather a collective network effect.

To come up with a collective rate equation, a dimensionality reduction is necessary. We
chose the population histogram of each population activity as the signal representing the large-
scale behavior of each component of the system. The histogram of the population activities of
each network were derived from numerical simulations of these networks. From the simulated
time series of the two competing subnetworks, we derived the mean state-dependent deriva-
tives. From these data, we could extract the flow and the nullclines of the associated two-
dimensional dynamics. We identified an equivalent Lotka-Volterra dynamics in two dimen-
sions, which showed the same qualitative behavior in both case studies. The nullclines typically
have three intersection points where two attractors are separated by a saddle node. The unsta-
ble manifold of the saddle redirects the trajectories towards the attractors. In a related study, it
has been reported that when threshold-linear rate dynamics are considered for individual neu-
rons, under some specific weight configurations, it results in the emergence of permitted and
forbidden states in a random network [73–75]. In these networks, differential modes (eigenvec-
tors with components of different sign) of the system are unstable, but the common modes
(eigenvectors with elements of the same sign) are stable. The network as a whole is stable; how-
ever, multistabilities arise due to unstable differential modes. In our model, obtained from a
reduction of a high-dimensional system, we can think of each competing population as a single
set. The differential mode is on the unstable manifold of the saddle and the common mode is
located on the stable manifold. Therefore, with a similar argument as [74, 75], we conclude
that for some values of the bifurcation parameter, two populations of the same type cannot
have high firing rates at the same time because it is not “permitted”, in the sense that it is not a
stable solution. Another interesting conclusion of [73] is that a digital circuit made of CMOS
transistors with shared inhibition among excitatory components is characterized by Lotka-Vol-
terra equations that are able to capture a number of different phenomena in the cortex. In both
cases (the circuit and the equations), the multistability due to the nonlinearity of its elements
and the hybrid nature of the system result in a rich dynamics. Flip-flop behavior in the brain
[76, 77] and computation by switching [78] are interesting ideas that have been suggested
recently and Lotka-Volterra equations seem to be able to implement those kind of dynamics as
well [73].

The attractor dynamics suggested in this paper, needs a source of fluctuations in order to be
able to capture the switching dynamics. In the analysis of the data from network simulation,
we observed that the life time distributions of the active states are well approximated by an
exponential distribution. A similar observation was reported in [63], where LIF neurons with
conductance based synapses in a different network configuration were studied. Our interpreta-
tion of this is that the “intrinsic noise” in the system, which mainly comes from finite size of
the system and from the correlations between neurons, drives the system. The external source
of input has no role here, as it is a constant current with no fluctuations. Finite-size fluctuations
as a source of perturbation from stable fixed points of the network dynamics has, in fact, been
suggested before [19, 54]. In our study, however, we had a closer look at the nature of the noise
and we found that it is multiplicative rather than additive (see [55] for more detailed study).
This feature makes the analysis of the relationship between the mean life time and the parame-
ter w very difficult. However, intuitively and analytically, when the factor w increases in the
EEI network, the distance between the fixed points increases, and the energy difference
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between the stable node and the saddle in the Liapunov function increases. This means that
jumping over the barrier to reach to the basin of attraction of the other attractor becomes more
difficult. A similar phenomenon occurs in the EII network. However, in this case the smaller w
is, the longer the mean life time of the active state becomes. The reason is with smaller w, inhib-
itory neurons inside each cluster inhibit each other less as compared to the inhibition that they
impose on the competing population. As a consequence, they cooperate more with each other.
We remind the reader that there is no unique Lyapunov function of the system, but as the two-
dimensional system was not integrable, we used the energy function suggested by [62].

We propose that Lotka-Volterra equations could be an alternative model for Wilson-
Cowan equations in the low firing rate regime of balanced random networks. Both are capable
of describing different types of dynamic features, including attractors, limit cycles and chaotic
dynamics. Phenomena related to cortical dynamics, like decision making, binocular rivalry and
persistent activity in working memory, could as well be justified by an attractor model, and in
this paper we demonstrated an application of Lotka-Volterra equations for such modeling.
Oscillations in the brain as a result of interaction between excitation and inhibition as well as
central pattern generators might also be captured by a limit cycle behavior of such equations,
however, further investigation is required. Furthermore, such equations were suggested to cap-
ture the robust transient dynamics in the brain which are reliable for information coding [79].
It is still not clear, however, how many populations of interacting spiking neurons with which
parameters are needed in order to be able to implement a winnerless competition through tran-
sient dynamics.

In this paper, we considered the scenarios of three subnetworks wherein at least one of the
subnetworks was comprised of inhibitory neurons. We speculate that for a larger number of
subnetworks with at least one inhibitory cluster, there should be a region in parameter space
where switching dynamics between populations is observed. The role of inhibition in generat-
ing winner-take-all dynamics is very well-known [46, 80]. In the large-scale dynamics of the
network, inhibition makes an effective negative coupling from one excitatory population to the
other one [19, 41]. Switching dynamics in the purely inhibitory networks of the striatum would
be also a very interesting case to study. Investigating whether competitive Lotka Volterra equa-
tions can capture those dynamics is a topic of research to be considered. Moreover, in this
paper, we considered a symmetric network in terms of connectivities. It would be interesting to
see what happens for asymmetric networks and different coupling scenarios.
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