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To correctly judge the functional role of cooperative
neural activity it is essential to understand how neural
correlations are determined by the structure and
dynamics of neural networks. Shared presynaptic input
is one of the major sources of correlated synaptic activ-
ity in such systems. In the asynchronous state of recur-
rent neural network models, however, spike correlations
are considerably smaller than what one would expect
based on the amount of shared presynaptic sources
[1,2]. A similar lack of correlations in the spiking activ-
ity of neighbouring cortical neurons has been observed
experimentally [3]. Recently, it has been pointed out
that shared-input correlations can be actively suppressed
by the dynamics of recurrent networks [4]. Here, we
show that both in networks with purely inhibitory cou-
pling (Fig. 1A) and in those with mixed excitatory-inhi-
bitory coupling (Fig. 1B) this active decorrelation affects

mainly the activity at low frequencies (<20 Hz). High-
frequency activity, in contrast, is rather unaffected.
Simulations rule out that this phenomenon is the result
of refractoriness. By means of a simple linear popula-
tion-rate model we demonstrate that the effect is essen-
tially explained by inhibitory feedback.
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Figure 1 Population-rate power spectra for an inhibitory (A) and a balanced recurrent network (B) of leaky integrate-and-fire model neurons
(black curves). Grey curves represent population-rate spectra of ensembles of unconnected neurons receiving stationary Poisson input spike
trains with the same shared-input structure as in the respective recurrent cases (black curves).
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Spike-timing dependent plasticity (STDP) has tradition-
ally been of great interest to theoreticians, as it seems to
provide an answer to the question of how the brain can
develop functional structure in response to repeated sti-
muli. However, despite this high level of interest, con-
vincing demonstrations of this capacity in large, initially
random networks have not been forthcoming. Such
demonstrations as there are typically rely on constrain-
ing the problem artificially. Techniques include employ-
ing additional pruning mechanisms or STDP rules that
enhance symmetry breaking, simulating networks with
low connectivity that magnify competition between
synapses, or combinations of the above (see, e.g. [1-3]).
Here, we describe a theory for the stimulus-driven

development of feed-forward structures in random net-
works. The theory explains why the emergence of such
structures does not take place in unconstrained systems
[4] and enables us to identify candidate biologically
motivated adaptations to the balanced random network
model that might facilitate it. Finally, we investigate
these candidate adaptations in large-scale simulations.
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The Bengalese finch produces a set of ordered sequences
of syllables. After deafening this song syntax is disrupted,
i.e. within days the sequence become randomized and
unstable [1]. Interestingly, the normal song syntax is
recovered when hearing is restored [2]. Studies have
shown that the vocal motor control system of the Benga-
lese finch rely on real time auditory feedback [3] and that
activity in the high vocal center (HVC) is affected by
feedback perturbations [4]. This suggests a reafferent
model [3] of song syntax generation in which the percep-
tion of the bird’s own song (BOS) cues the motor system.
Here, we present a functional network model of the song

syntax generation based on realistic spiking neurons. Neu-
rons are connected in feed-forward structures (synfire
chains, SFCs) that can reproduce the neural activity
observed in the HVC of the songbird [5]. Individual sylla-
bles are represented by the activity propagation throughout
distinct SFCs. The auditory perception of the syllables is
modeled by activity changes in an auditory network which
in turn primes specific subsets of the HVC neurons to
obtain the desired song syntax. If the auditory feedback is
suppressed random syllable sequences are generated due to
the ‘winner takes all’ competition of individual syllables [6].

Conclusion
Our model can reproduce the experimentally observed
song syntax of the Bengalese finch and its disruption
when auditory feedback is interrupted. It provides a fra-
mework for theoretical investigations of HVC activity
and changes in the song syntax in response to specific
feedback disturbances. Additionally, the model predicts
priming of HVC neurons at the transition between indi-
vidual syllables that could be tested in further experi-
mental studies.

From a theoretical point of view the individual sylla-
bles can be regarded as primitives of the song which are
combined following a given syntax. Hence, our reaffer-
ent model demonstrates how compositionality of a sys-
tem can be realized given neurobiologically realistic
assumptions.
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Persistent spatiotemporal patterns have been observed
extensively in various neural systems including cortical
cultures [1]. Activity in cortical cultures is composed of
network-wide bursts of spikes, during which global firing
rate increases dramatically. Previously, it has been shown
that cultures display persistent temporal patterns that are

hierarchically organized and stable over several hours.
Fluctuations in the culture activity persistently converge
to stable precise temporal patterns, for which these pat-
terns are called dynamic attractors. Temporal structure
in network bursts can be clustered into several groups,
each of which can be seen as a separate burst type.

* Correspondence: guerel@informatik.uni-freiburg.de
1Bernstein Center Freiburg, Albert-Ludwig University of Freiburg, Germany

Figure 1 Comparison of the observed firing rate (solid, blue) and the predicted firing rate (dashed, red) in a selected culture. Light blue shaded
regions in the background indicate the intervals, where prediction is done based on the cue signal. The cue signal is the spatial pattern
containing the firing rates of all electrodes just 1 time step before the shaded region. The overall correlation coefficient between the predicted
and the observed signal is 0.88.
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A model of a neural system should be able to repro-
duce the temporal patterns under the same input and/or
initial state, which is a minimal requirement for a net-
work-level model to reveal the information encoded in
such patterns. Our approach taken here is to employ a
generic model (a reservoir network) that displays a rich
repertoire of complex spatiotemporal patterns to be
matched with the observed biological patterns by para-
meter tuning. More specifically, we employ an Echo
State Network (ESN) [2] with leaky integrator neurons
as a modeling tool. Here, we consider cultures of disso-
ciated cortical tissue recorded with microelectrode
arrays (MEA) as an example of biological neural net-
works without specific connectivity and simulate the
corresponding burst types based on a cue signal. The
cue signal is composed of a snapshot (10 ms) of the
individual firing rates recorded at each electrode at
burst onset and serves as an indicator of the current
dynamic state of the network. A simple readout training
of the ESN yields a predictive model of the temporal
activity pattern in the global firing rate. The simulated
pattern displays a high correlation with the actual one
observed in the culture (Figure 1). The model can also
be used to visualize the underlying structure in the
recorded signals.
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The functional implications of correlations in cortical
networks are still highly debated [1] and theoreticians
are intensely searching for a self-consistent solution of
the correlation structure in recurrent networks. Feed-
forward descriptions have been presented as approxima-
tions [2] and different aspects of correlation functions in
the asynchronous irregular state have been accurately
predicted, such as the zero time lag correlation [3] and
its scaling with network size on a coarse time scale [1].
Previous approaches do, however, not explain the differ-
ences between the correlation functions for excitatory
and inhibitory neurons and they do not describe their
temporal structure, an experimentally observable feature
that has important functional consequences for synaptic
plasticity [4].
The approximation of neural dynamics by a linear

response kernel is a powerful technique in the analysis
of recurrent networks. Here we use Hawkes processes
[4,5] to model the spiking activity of a neuron as a rate-
modulated Poisson process, where incoming synaptic
events cause exponentially decaying deflections of the

instantaneous firing rate that superimpose linearly. We
analytically determine the correlation structure of recur-
rent random networks of these excitatory and inhibitory
linear neurons with delayed pulse-coupling. We show
that this minimal linear model is sufficient to explain
generic features of correlations: The origin of troughs
near the center peak, the asymmetry between excitatory
and inhibitory neurons, and the emergence of damped
oscillatory correlation functions (Fig. 1A). In our deriva-
tion we employ a novel series expansion of the correla-
tion function in terms of resonance frequencies of the
delayed feedback system, that is valid in the whole para-
meter regime of inhibition dominated networks. Pre-
vious expansions were limited to a feedback gain below
1 [4]. Our results identify two distinct contributions to
the correlation: a feed-forward term due to correlated
inputs (Fig. 1B, black) and a self-feedback term due to
the activity of the neurons under consideration (Fig. 1B,
gray). This self-feedback explains the asymmetry of cor-
relations between excitatory and inhibitory neurons (Fig.
1A, black: simulation, gray: theory).
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